
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Distributed Transaction Processing:
The XA Specification

[This page intentionally left blank]

X/Open CAE Specification

Distributed Transaction Processing: The XA Specification

X/Open Company Ltd.

 December 1991, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

X/Open CAE Specification

Distributed Transaction Processing: The XA Specification

ISBN: 1 872630 24 3
X/Open Document Number: XO/CAE/91/300

Set in Palatino by X/Open Company Ltd., U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted
to X/Open at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification (1991)

Contents

Chapter 1 Introduction .. 1

Chapter 2 Model and Definitions ... 3
 2.1 X/Open DTP Model... 3
 2.1.1 Interfaces between Local TP Components 3
 2.2 Definitions .. 4
 2.2.1 Transaction ... 4
 2.2.2 Distributed Transaction Processing 4
 2.2.3 Application Program.. 4
 2.2.4 Resource Manager .. 5
 2.2.5 Global Transactions .. 5
 2.2.6 Transaction Branches ... 5
 2.2.7 Transaction Manager.. 6
 2.2.8 Thread of Control.. 6
 2.2.9 Tightly- and Loosely-coupled Threads 6
 2.3 Transaction Completion and Recovery................................ 8
 2.3.1 Rolling Back the Global Transaction 8
 2.3.2 Protocol Optimisations .. 8
 2.3.3 Heuristic Branch Completion... 9
 2.3.4 Failures and Recovery.. 9

Chapter 3 Interface Overview ... 11
 3.1 Index to Services in the XA Interface.................................... 12
 3.2 Opening and Closing Resource Managers 13
 3.3 Association of Threads with Transaction Branches........... 14
 3.3.1 Registration of Resource Managers 15
 3.4 Branch Completion... 17
 3.5 Synchronous, Non-blocking and Asynchronous Modes.. 18
 3.6 Failure Recovery ... 18

Chapter 4 The "xa.h" Header .. 19
 4.1 Naming Conventions... 19
 4.2 Transaction Identification.. 19
 4.3 Resource Manager Switch... 21
 4.4 Flag Definitions ... 22
 4.5 Return Codes ... 23

Distributed Transaction Processing: The XA Specification iii

Contents

Chapter 5 Reference Manual Pages ... 25
 ax_reg() ... 26
 ax_unreg()... 29
 xa_close ()... 30
 xa_commit() .. 32
 xa_complete () .. 35
 xa_end()... 37
 xa_forget () ... 40
 xa_open()... 42
 xa_prepare () .. 44
 xa_recover ()... 47
 xa_rollback () ... 49
 xa_start()... 52

Chapter 6 State Tables ... 57
 6.1 Resource Manager Initialisation.. 58
 6.2 Association of Threads of Control with Transactions....... 59
 6.2.1 Dynamic Registration of Threads.. 60
 6.3 Transaction States ... 61
 6.4 Asynchronous Operations .. 63

Chapter 7 Implementation Requirements 65
 7.1 Application Program Requirements..................................... 65
 7.2 Resource Manager Requirements ... 66
 7.2.1 The Application Program (Native) Interface 68
 7.3 Transaction Manager Requirements 69

Appendix A Complete Text of "xa.h"... 71

 Index.. 75

List of Tables

6-1 State Table for Resource Manager Initialisation................. 58
6-2 State Table for Transaction Branch Association.................. 59
6-3 State Table for Transaction Branch Association

(Dynamic Registration).. 60
6-4 State Table for Transaction Branches 62
6-5 State Table for Asynchronous Operations 63

iv X/Open CAE Specification (1991)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most
of the world’s largest information systems suppliers, user organisations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging
standards into a comprehensive, integrated, high-value and usable system
environment, called the Common Applications Environment (CAE). This environment
covers the standards, above the hardware level, that are needed to support open
systems. It provides for portability and interoperability of applications, and allows
users to move between systems with a minimum of retraining.

The components of the Common Applications Environment are defined in X/Open
CAE Specifications. These contain, among other things, an evolving portfolio of
practical application programming interfaces (APIs), which significantly enhance
portability of application programs at the source code level, and definitions of, and
references to, protocols and protocol profiles, which significantly enhance the
interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance
tests and a distinct X/Open trademark - the XPG brand - that is licensed by X/Open
and may be carried only on products that comply with the X/Open CAE
Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements
the corresponding X/Open CAE Specifications. Users specifying XPG-conformance in
their procurements are therefore certain that the branded products they buy conform
to the CAE Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The
policy is to use formal approved de jure standards, where they exist, and to adopt
widely supported de facto standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with
standards development organisations to assist in the creation of formal standards
covering the needed functions, and to make its own work freely available to such
organisations. Additionally, X/Open has a commitment to align its definitions with
formal approved standards.

Distributed Transaction Processing: The XA Specification v

Preface

X/Open Specifications

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life
specifications that form the basis for conformant and branded X/Open systems.
They are intended to be used widely within the industry for product development
and procurement purposes.

Developers who base their products on a current CAE Specification can be sure that
either the current specification or an upwards-compatible version of it will be
referenced by a future XPG brand (if not referenced already), and that a variety of
compatible, XPG-branded systems capable of hosting their products will be
available, either immediately or in the near future.

CAE Specifications are not published to coincide with the launch of a particular
XPG brand, but are published as soon as they are developed. By providing access
to its specifications in this way, X/Open makes it possible for products that
conform to the CAE (and hence are eligible for a future XPG brand) to be developed
as soon as practicable, enhancing the value of the XPG brand as a procurement aid
to users.

• Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations,
that are released in a controlled manner for the purpose of validation through
practical implementation or prototyping. A Preliminary Specification is not a
‘‘draft’’ specification. Indeed, it is as stable as X/Open can make it, and on
publication has gone through the same rigorous X/Open development and review
procedures as a CAE Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by
formal standards organisations, and product development teams are intended to
develop products on the basis of them. However, because of the nature of the
technology that a Preliminary Specification is addressing, it is untried in practice
and may therefore change before being published as a CAE Specification. In such a
case the CAE Specification will be made as upwards-compatible as possible with
the corresponding Preliminary Specification, but complete upwards-compatibility
in all cases is not guaranteed.

In addition, X/Open periodically publishes:

• Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to
disseminate information on its current direction and thinking to an interested
audience, in advance of formal publication, with a view to soliciting feedback and
comment.

vi X/Open CAE Specification (1991)

Preface

A Snapshot represents the interim results of an X/Open technical activity.
Although at the time of publication X/Open intends to progress the activity
towards publication of an X/Open Preliminary or CAE Specification, X/Open is a
consensus organisation, and makes no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member
to make any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of
specifying or claiming X/Open-conformance.

This Document

The January 1987 edition of the X/Open Portability Guide committed X/Open to
standardise facilities by which commercial applications could achieve distributed
transaction processing (DTP) on UNIX systems. This document specifies the
bidirectional interface between a transaction manager and resource manager (the XA
interface).

This document is a CAE specification (see above), which was initially issued as a
Preliminary Specification in April 1990, and reissued as a Snapshot of current thinking
in June 1991. This CAE reflects changes to the specification resulting from prototype
implementations and committee and industry review.

This specification is structured as follows:

• Chapter 1 is an introduction.

• Chapter 2 provides fundamental definitions for the remainder of the document.

• Chapter 3 is an overview of the XA interface.

• Chapter 4 discusses the data structures that are part of the XA interface.

• Chapter 5 contains reference manual pages for each routine in the XA interface.

• Chapter 6 contains state tables.

• Chapter 7 summarises the implementation requirements and identifies optional
features.

• Appendix A is the code of the header file required by XA routines.

There is an index at the end.

Distributed Transaction Processing: The XA Specification vii

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Constant width strings are code examples or literals and are to be typed just as
they appear.

• Italic strings are used for emphasis or to identify the first instance of a word
requiring definition. Italics also denote:

— variable names

— commands or utilities

— functions; these are shown as follows: name().

• The notation "file.h" indicates a header.

• The notation [ABCD] is the name of a return value.

• Ellipses (. . .) are used to show that additional arguments are optional.

viii X/Open CAE Specification (1991)

Trademarks

X/OpenTM and the ‘X’ device are trademarks of X/Open Company Limited in the U.K.
and other countries.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and
other countries.

PalatinoTM is a trademark of Linotype AG and/or its subsidiaries.

Distributed Transaction Processing: The XA Specification ix

Referenced Documents

The following documents are referenced in this specification:

ASN.1
Information Processing Systems — Open Systems Interconnection — Specification
of Abstract Syntax Notation 1 (ASN.1), ISO 8824, 1990.

BER
Information Processing Systems — Open Systems Interconnection — Specification
of Basic Encding Rules for Abstract Syntax Notation 1 (ASN.1), ISO 8825, 1990.

C
ISO/IEC 9899:1990 (which is technically identical to ANS X3.159-1989,
Programming Language C)

DTP
X/Open Guide, Distributed Transaction Processing Reference Model, X/Open
Company Ltd., October 1991.

OSI DTP
The ISO/IEC Open Systems Interconnection (OSI) Distributed Transaction
Processing (DTP) standard.

• ISO/IEC DIS 10026-1 (1991) (model)

• ISO/IEC DIS 10026-2 (1991) (service)

• ISO/IEC DIS 10026-3 (1991) (protocol)

OSI CCR
The ISO/IEC Open Systems Interonnection (OSI) Commitment, Concurrency, and
Recovery (CC) standard.

• ISO/IEC 9804.3 (1989) (service)

• ISO/IEC 9805.3 (1989) (protocol)

SQL
X/Open Developers’ Specification, Structured Query Language (SQL), X/Open
Company Ltd., 1990, or any later revision.

x X/Open CAE Specification (1991)

- 1 -

Distributed Transaction Processing: The XA Specification 1

Chapter 1

Introduction

The X/Open Distributed Transaction Processing (DTP) model envisages three software
components:

• An application program (AP) defines transaction boundaries and specifies actions
that constitute a transaction.

• Resource managers (RMs, such as databases or file access systems) provide access
to shared resources.

• A separate component called a transaction manager (TM) assigns identifiers to
transactions, monitors their progress, and takes responsibility for transaction
completion and for failure recovery.

Chapter 2 defines each component in more detail and illustrates the flow of control.

This document specifies the XA interface: the bidirectional interface between a
transaction manager and a resource manager. The XA interface is not an ordinary
Application Programming Interface (API). It is a system-level interface between DTP
software components. X/Open is developing other DTP interfaces for direct use by an
application program (see Section 2.1 on page 3 for an overview). These interfaces may
be the subject of future publications.

This specification is limited to the model presented in Section 2.1 on page 3. This
specification does not discuss aspects of the model that pertain to communication.
X/Open anticipates that heterogeneous TMs will use the OSI DTP protocols for
communication of DTP information and application data. Such communication will
involve interfaces in addition to the one described in this specification, and will involve
a more detailed DTP model. This is deferred to a later publication.

Relevant definitions and other important concepts are discussed in Chapter 2. This
chapter also defines the AP, TM and RM in more detail, and describes their interaction.
Chapter 3 is an overview of the XA interface, describing the situations in which each of
the services is used. Chapter 4 discusses the data structures that are part of the XA
interface. Reference manual pages for each routine in the XA interface are presented in
Chapter 5; state tables follow in Chapter 6. Chapter 7 summarises the implications of
this specification on the implementors of RMs and TMs; it also identifies features that
are optional. Appendix A presents the contents of an "xa.h" header file in both ANSI C
and Common Usage C.

Distributed Transaction Processing: The XA Specification 1

Introduction

2 X/Open CAE Specification (1991)

Chapter 2

Model and Definitions

This chapter discusses the XA interface in general terms and provides necessary
background material for the rest of the specification. The chapter shows the
relationship of the interface to the X/Open DTP model. The chapter also states the
design assumptions that the interface uses and shows how the interface addresses
common DTP concepts.

2.1 X/Open DTP Model
The figure below illustrates a local instance of a DTP system where an AP calls a TM to
structure transactions. The boxes indicate software components in the X/Open DTP
model (see the definitions in Section 2.2 on page 4). The arrows indicate the directions
in which control flows.

There may be several DTP systems coexisting on the same processor. The boxes in the
figure below are not necessarily separate processes, nor necessarily a single thread of
control (see Section 2.2.8 on page 6). Furthermore, the components of this model do not
have invariable roles. For example, an RM might use the TX interface to do work in
support of a transaction.

(3) TM and RMs exchange transaction information

(2) AP defines
transaction
boundaries
through the
TX interface

Resource
Managers

(RMs)

Transaction
Manager

(TM)

Application Program (AP)

(1) AP uses
resources from

a set of RMs

2.1.1 Interfaces between Local TP Components

The subject of this X/Open specification is interface (3) in the diagram above, the XA
interface by which TMs and RMs interact.

For more details on this model and diagram, including detailed definitions of each
component, see the referenced DTP guide.

Distributed Transaction Processing: The XA Specification 3

Definitions Model and Definitions

2.2 Definitions
For additional definitions see the referenced DTP guide.

2.2.1 Transaction

A transaction is a complete unit of work. It may comprise many computational tasks,
which may include user interface, data retrieval, and communications. A typical
transaction modifies shared resources. (The referenced OSI DTP specification (model)
defines transactions more precisely.)

Transactions must be able to be rolled back . A human user may roll back the transaction
in response to a real-world event, such as a customer decision. A program can elect to
roll back a transaction. For example, account number verification may fail or the
account may fail a test of its balance. Transactions also roll back if a component of the
system fails, keeping it from retrieving, communicating, or storing data. Every DTP
software component subject to transaction control must be able to undo its work in a
transaction that is rolled back at any time.

When the system determines that a transaction can complete without failure of any
kind, it commits the transaction. This means that changes to shared resources take
permanent effect. Either commitment or rollback results in a consistent state.
Completion means either commitment or rollback.

2.2.2 Distributed Transaction Processing

Within the scope of this document, DTP systems are those where work in support of a
single transaction may occur across RMs. This has several implications:

• The system must have a way to refer to a transaction that encompasses all work
done anywhere in the system.

• The decision to commit or roll back a transaction must consider the status of work
done anywhere on behalf of the transaction. The decision must have uniform effect
throughout the DTP system.

Even though an RM may have an X/Open-compliant interface, such as Structured
Query Language (SQL), it must also address these two items to be useful in the DTP
environment.

2.2.3 Application Program

The AP defines transactions and accesses resources within transaction boundaries.
Each AP specifies a sequence of operations that involves resources such as terminals
and databases. This specification generally uses the term AP to refer to a single
instance of an application program.

4 X/Open CAE Specification (1991)

Model and Definitions Definitions

2.2.4 Resource Manager

An RM manages a certain part of the computer’s shared resources. Many other
software entities can request access to the resource from time to time, using services
that the RM provides. Here are some examples of RMs:

• A database management system (DBMS) is an RM. Typical DBMSs are capable of
defining transactions and committing work atomically.

• A file access method such as the Indexed Sequential Access Method (ISAM) can be
the basis for an RM. Typically, an ISAM RM must be enhanced to support
transactions as defined herein.

• A print server might be implemented as an RM.

A single RM may service multiple independent resource domains. An RM instance
services one of these domains. (See also Section 3.2 on page 13.) Unless specified
otherwise, operations this specification allows on an RM are allowed on each RM
instance.

2.2.5 Global Transactions

Every RM in the DTP environment must support transactions as described in Section
2.2.1 on page 4. Many RMs already structure their work into recoverable units.

In the DTP environment, many RMs may operate in support of the same unit of work.
This unit of work is a global transaction . For example, an AP might request updates to
several different databases. Work occurring anywhere in the system must be
committed atomically. Each RM must let the TM coordinate the RM’s recoverable
units of work that are part of a global transaction.

Commitment of an RM’s internal work depends not only on whether its own
operations can succeed, but also on operations occurring at other RMs, perhaps
remotely. If any operation fails anywhere, every participating RM must roll back all
operations it did on behalf of the global transaction. A given RM is typically unaware
of the work that other RMs are doing. A TM informs each RM of the existence, and
directs the completion, of global transactions. An RM is responsible for mapping its
recoverable units of work to the global transaction.

2.2.6 Transaction Branches

A global transaction has one or more transaction branches (or branches). A branch is a
part of the work in support of a global transaction for which the TM and the RM
engage in a separate but coordinated transaction commitment protocol (see Section 2.3
on page 8). Each of the RM’s internal units of work in support of a global transaction is
part of exactly one branch.

A global transaction might have more than one branch when, for example, the AP uses
multiple processes or is involved in the same global transaction by multiple remote
APs.

After the TM begins the transaction commitment protocol, the RM receives no
additional work to do on that transaction branch. The RM may receive additional work

Distributed Transaction Processing: The XA Specification 5

Definitions Model and Definitions

on behalf of the same transaction, from different branches. The different branches are
related in that they must be completed atomically.

Each transaction branch identifier (or XID — see Section 4.2 on page 19) that the TM
gives the RM identifies both a global transaction and a specific branch. The RM may
use this information to optimise its use of shared resources and locks.

2.2.7 Transaction Manager

TMs manage global transactions, coordinate the decision to commit them or roll them
back, and coordinate failure recovery. The AP defines the start and end of a global
transaction by calling a TM. The TM assigns an identifier to the global transaction (see
Section 4.2 on page 19). The TM manages global transactions and informs each RM of
the XID on behalf of which the RM is doing work. Although RMs can manage their
own recoverable work units as they see fit, each RM must accept XIDs and associate
them with those work units. In this way, an RM knows what recoverable work units to
complete when the TM completes a global transaction.

2.2.8 Thread of Control

A thread of control (or a thread) is the entity, with all its context, that is currently in
control of a processor. A thread of control is an operating-system process: an address
space and single thread of control that executes within that address space, and its
required system resources. The context may include the process’ locks on shared
resources, and the files the process has open. For portability reasons, the notion of
thread of control must be common among the AP, TM and RM.

The thread concept is central to the TM’s coordination of RMs. APs call RMs to request
work, while TMs call RMs to delineate transaction branches. The way the RM knows
that a given work request pertains to a given branch is that the AP and the TM both call
it from the same thread of control . For example, an AP thread calls the TM to declare the
start of a global transaction. The TM records this fact and informs RMs. After the AP
regains control, it uses the native interface of one or more RMs to do work. The RM
receives the calls from the AP and TM in the same thread of control.

Certain XA routines, therefore, must be called from a particular thread. The reference
manual pages in Chapter 5 indicate which routines require this.

2.2.9 Tightly- and Loosely-coupled Threads

Many application threads of control can participate in a single global transaction. All
the work done in these threads is atomically completed. Within a single global
transaction, the relationship between any pair of participating threads is either tightly-
coupled or loosely-coupled :

• A tightly-coupled relationship is one where a pair of threads are designed to share
resources. In addition, with respect to an RM’s isolation policies, the pair are
treated as a single entity. Thus, for a pair of tightly-coupled threads, the RM must
guarantee that resource deadlock does not occur within the transaction branch.

6 X/Open CAE Specification (1991)

Model and Definitions Definitions

• A loosely-coupled relationship provides no such guarantee. With respect to an
RM’s isolation policies, the pair may be treated as if they were in separate global
transactions even though the work is atomically completed.

Within a single global transaction, a set of tightly-coupled threads may consist of more
than just a pair. Moreover, many sets of tightly-coupled threads may exist within the
same global transaction and each set is loosely coupled with respect to the others. The
reference manual pages in Chapter 5 indicate how a TM communicates these
relationships to an RM.

Distributed Transaction Processing: The XA Specification 7

Transaction Completion and Recovery Model and Definitions

2.3 Transaction Completion and Recovery
TMs and RMs use two-phase commit with presumed rollback, as defined by the
referenced OSI DTP specification (model).

In Phase 1, the TM asks all RMs to prepare to commit (or prepare) transaction branches.
This asks whether the RM can guarantee its ability to commit the transaction branch.
An RM may have to query other entities internal to that RM.

If an RM can commit its work, it records stably the information it needs to do so, then
replies affirmatively. A negative reply reports failure for any reason. After making a
negative reply and rolling back its work, the RM can discard any knowledge it has of
the transaction branch.

In Phase 2, the TM issues all RMs an actual request to commit or roll back the
transaction branch, as the case may be. (Before issuing requests to commit, the TM
stably records the fact that it decided to commit, as well as a list of all involved RMs.)
All RMs commit or roll back changes to shared resources and then return status to the
TM. The TM can then discard its knowledge of the global transaction.

2.3.1 Rolling Back the Global Transaction

The TM rolls back the global transaction if any RM responds negatively to the Phase 1
request, or if the AP directs the TM to roll back the global transaction. Therefore, any
negative response vetoes the global transaction. A negative response concludes an
RM’s involvement in the global transaction.

The TM effects Phase 2 by telling all RMs to roll back transaction branches. They must
not let any changes to shared resources become permanent. The TM does not issue
Phase 2 requests to RMs that responded negatively in Phase 1. The TM does not need
to record stably the decision to roll back nor the participants in a rolled back global
transaction.

2.3.2 Protocol Optimisations

• Read-only
An RM can respond to the TM’s prepare request by asserting that the RM was not
asked to update shared resources in this transaction branch. This response
concludes the RM’s involvement in the transaction; the Phase 2 dialogue between
the TM and this RM does not occur. The TM need not stably record, in its list of
participating RMs, an RM that asserts a read-only role in the global transaction.

However, if the RM returns the read-only optimisation before all work on the global
transaction is prepared, global serialisability1 cannot be guaranteed. This is because
the RM may release transaction context, such as read locks, before all application
activity for that global transaction is finished.

1. Serialisability is a property of a set of concurrent transactions. For a serialisable set of transactions, at least one
serial sequence of the transactions exists that produces identical results, with respect to shared resources, as does
concurrent execution of the transaction.

8 X/Open CAE Specification (1991)

Model and Definitions Transaction Completion and Recovery

• One-phase Commit
A TM can use one-phase commit if it knows that there is only one RM anywhere in
the DTP system that is making changes to shared resources. In this optimisation,
the TM makes its Phase 2 commit request without having made a Phase 1 prepare
request. Since the RM decides the outcome of the transaction branch and forgets
about the transaction branch before returning to the TM, there is no need for the TM
to record stably these global transactions and, in some failure cases, the TM may not
know the outcome.

2.3.3 Heuristic Branch Completion

Some RMs may employ heuristic decision-making: an RM that has prepared to
commit a transaction branch may decide to commit or roll back its work independently
of the TM. It could then unlock shared resources. This may leave them in an
inconsistent state. When the TM ultimately directs an RM to complete the branch, the
RM may respond that it has already done so. The RM reports whether it committed
the branch, rolled it back, or completed it with mixed results (committed some work
and rolled back other work).

An RM that reports heuristic completion to the TM must not discard its knowledge of
the transaction branch. The TM calls the RM once more to authorise it to forget the
branch. This requirement means that the RM must notify the TM of all heuristic
decisions, even those that match the decision the TM requested. The referenced
OSI DTP specifications (model) and (service) define heuristics more precisely.

2.3.4 Failures and Recovery

A useful DTP system must be able to recover from a variety of failures. A storage
device or medium, a communication path, a node, or a program could fail.

Failures that a node can correct internally may not affect a global transaction.

Failures that do not disrupt the commitment protocol let the DTP system respond by
rolling back appropriate global transactions. For example, an RM recovering from a
failure responds negatively to a prepare request based on the fact that it does not
recognise the XID.

More significant failures may disrupt the commitment protocol. The TM typically
senses the failure when an expected reply does not arrive.

Failure and recovery processing in an X/Open DTP system is compatible with the
referenced OSI DTP specifications, which define the presumed-rollback protocol. The
X/Open DTP model makes these assumptions:

• TMs and RMs have access to stable storage

• TMs coordinate and control recovery

• RMs provide for their own restart and recovery of their own state. On request, an
RM must give a TM a list of XIDs that the RM has prepared for commitment or has
heuristically completed.

Distributed Transaction Processing: The XA Specification 9

Model and Definitions

10 X/Open CAE Specification (1991)

Chapter 3

Interface Overview

This chapter gives an overview of the XA interface. This is the interface between the
TM and the RM in an X/Open DTP system. Chapter 5 contains reference manual
pages for each routine in alphabetical order. These pages contain C-language function
prototypes.

.... ...
..
..
..
...

AP

RM TM

.........

.........

XA

The X/Open DTP model envisages interfaces between each of the AP, RM, and TM
(see Section 2.1 on page 3). Generally, each use of the XA interface is prompted by the
AP calling the TM or the RM.

Distributed Transaction Processing: The XA Specification 11

Index to Services in the XA Interface Interface Overview

3.1 Index to Services in the XA Interface

Name Description See
Register an RM with a TM. Section 3.3.1 on page 16ax_reg
Unregister an RM with a TM. Section 3.3.1 on page 16ax_unreg

Terminate the AP’s use of an RM. Section 3.2 on page 13xa_close
Tell the RM to commit a transaction branch. Section 3.4 on page 17xa_commit
Test an asynchronous xa_ operation for
completion.

Section 3.5 on page 18xa_complete

Dissociate the thread from a transaction branch. Section 3.3 on page 14xa_end
Permit the RM to discard its knowledge of a
heuristically-completed transaction branch.

Section 3.4 on page 17xa_forget

Initialise an RM for use by an AP. Section 3.2 on page 13xa_open
Ask the RM to prepare to commit a transaction
branch.

Section 3.4 on page 17xa_prepare

Get a list of XIDs the RM has prepared or
heuristically completed.

Section 3.6 on page 18xa_recover

Tell the RM to roll back a transaction branch. Section 3.4 on page 17xa_rollback
Start or resume a transaction branch - associate an
XID with future work that the thread requests of
the RM.

Section 3.3 on page 14xa_start

The ax_ routines let an RM call a TM. All TMs must provide these routines. These
routines let an RM dynamically control its participation in a transaction branch.

The xa_ routines are supplied by RMs operating in the DTP environment and called by
TMs. When an AP calls a TM to start a global transaction, the TM may use the xa_
interface to inform RMs of the transaction branch. After the AP uses the RM’s native
interface to do work in support of the global transaction, the TM calls xa_ routines to
commit or roll back branches. One other xa_ routine helps the TM coordinate failure
recovery.

A TM must call the xa_ routines in a particular sequence (see the state tables in Chapter
6). When a TM invokes more than one RM with the same xa_ routine, it can do so in an
arbitrary sequence.

Note: The routine names in the xa_ series are only templates.

The actual names of these functions are internal to the RM. The RM publishes the
name of a structure (see Section 4.3 on page 21) that specifies the entry points to the
RM.

12 X/Open CAE Specification (1991)

Interface Overview Opening and Closing Resource Managers

3.2 Opening and Closing Resource Managers
In each thread of control, the TM must call xa_open() for each RM directly accessible by
that thread before calling any other xa_ routine. The TM must eventually call xa_close ()
to dissociate the AP from the RM.

If an RM needs to take start-up actions (such as opening files, opening paths to a
server, or resynchronising a node on the network), then it could do so when called by
xa_open(). X/Open does not specify the actual meaning of xa_open() and xa_close () to
an RM, but the effect must be internal to the RM and must not affect transaction
processing in either the calling TM or in other RMs.

If an RM requires or accepts parameters to govern its operation (for example, a
directive to open files for reading only), or to identify a target resource domain, then a
string argument to xa_open() conveys this information. If the RM does not require
initialisation parameters, the string is typically an empty string. The xa_close () call
likewise takes a string.

TMs typically read the initialisation string from a configuration file. The xa_open()
routine, and the string form of its argument, support portability. A TM can give the
administrator control over every run-time option that any RM provides through
xa_open() with no reprogramming or relinking. The administrator must only edit a
configuration file or perform a comparable, system-specific procedure.

The TM calls xa_open() with an identifier that the TM uses subsequently to identify the
RM instance. A single RM may service multiple resource domains using multiple RM
instances, if each instance supports independent transaction completion. For example,
a single database system might access several data domains, or a single printer spooler
might service multiple printers. The TM calls such an RM’s xa_open() routine several
times, once for each instance, using string parameters that identify the respective
resource. It must generate a different RM identifier for each call.

To enhance portability, RMs in the DTP environment should rely on the use of
xa_open() in place of any non-standard open service the RM may provide in its native
interface. If an RM lets DTP applications call the native open routine, the effect must
not conflict with the TM’s use of xa_open().

Distributed Transaction Processing: The XA Specification 13

Association of Threads with Transaction Branches Interface Overview

3.3 Association of Threads with Transaction Branches
Several threads may participate in a single transaction branch, some more than once.
The xa_start() and xa_end() routines pass an XID to an RM to associate or dissociate the
calling thread with a branch. The association is not necessarily the thread’s initial
association with the branch; its dissociation is not necessarily the final one.

A thread’s association with a transaction branch can be active or suspended:

• A thread is actively associated with a transaction branch if it has called xa_start()
and has not made a corresponding call to xa_end(). A thread is allowed only one
active association with each RM at a time.

• Certain calls to xa_end() suspend the thread’s association (see Suspend below). The
call may indicate that the association can migrate, that is, that any thread may
resume the association. In this case, the calling thread is no longer associated. (An
RM may indicate that it does not support association migration.)

If a thread calls xa_end() to suspend its association but the association cannot migrate
to another thread, the calling thread retains a suspended association with the
transaction branch.

Several uses of xa_start() and xa_end() are considered below:

• Start
The primary use of xa_start() is to register a new transaction branch with the RM.
This marks the start of the branch. Subsequently, the AP, using the same thread of
control , uses the RM’s native interface to do useful work. All requests for service
made by the same thread are part of the same branch until the thread dissociates
from the branch (see below).

The return code from xa_start() may indicate that the RM has already vetoed
commitment of the transaction branch. This return code is not an error; rolled back
global transactions may be routine, while actual errors deserve the administrator’s
attention.

• Join
Another use of xa_start() is to join an existing transaction branch. TMs must use a
certain form of xa_start() so that RMs can validate that they recognise the passed
XID.

RMs in the DTP environment should anticipate that many threads will try to use
them concurrently. If multiple threads use an RM on behalf of the same XID, the
RM is free to serialise the threads’ work in any way it sees fit. For example, an RM
may block a second or subsequent thread while one is active.

• Resume
A special form of xa_start() associates a thread with an existing transaction branch
that has been suspended (see below).

• End
A typical call to xa_end() dissociates the calling thread from the transaction branch
and lets the branch be completed (see Section 3.4 on page 17). Alternatively, a
thread may use xa_start() to rejoin the branch.

14 X/Open CAE Specification (1991)

Interface Overview Association of Threads with Transaction Branches

• Suspend
A form of xa_end() suspends, instead of ending, a thread’s association with the
transaction branch. This indicates that the thread has left the branch in an
incomplete state. By using the resume form of xa_start(), it or another thread
resumes its association with the branch. Instead of resuming, the TM may
completely end the suspended association by using xa_end().

• Rollback-only
An RM need not wait for global transaction completion to report an error. The RM
can return rollback-only as the result of any xa_start() or xa_end() call. The TM can
use this knowledge to avoid starting additional work on behalf of the global
transaction. An RM can also unilaterally roll back and forget a transaction branch
any time before it prepares it. A TM detects this when an RM subsequently
indicates that it does not recognise the XID.

• Transaction branch states
Several state tables appear in Chapter 6. Each call to xa_start() or xa_end() may
affect the status of the thread’s association with a transaction branch (see Table 6-2
on page 59 and Table 6-3 on page 60) and the status of the branch itself (see Table 6-
4 on page 62). A TM must use these routines so that each thread of control makes
calls in a sequence that complies with both tables.

Transaction Context

Transaction context is RM-specific information visible to the AP. The RM should
preserve certain transaction context on xa_end() so that the RM can restore context in
the join or resume cases (defined above). In the join case, the RM should make
available enough transaction context so that tightly-coupled threads are not susceptible
to resource deadlock within the transaction branch. In the resume case, the RM should
make available at least that RM-specific transaction context present at the time of the
suspend, as if the thread had effectively never been suspended, except that other
threads in the global transaction may have affected this context.

3.3.1 Registration of Resource Managers

Normally, a TM involves all associated RMs in a transaction branch. (The TM’s set of
RM switches, described in Section 4.3 on page 21 tells the TM which RMs are
associated with it.) The TM calls all these RMs with xa_start(), xa_end(), and
xa_prepare (), although an RM that is not active in a branch need not participate further
(see Section 2.3.2 on page 8). A technique to reduce overhead for infrequently-used
RMs is discussed below.

Distributed Transaction Processing: The XA Specification 15

Association of Threads with Transaction Branches Interface Overview

Dynamic Registration

Certain RMs, especially those involved in relatively few global transactions, may ask
the TM to assume they are not involved in a transaction. These RMs must register with
the TM before they do application work, to see whether the work is part of a global
transaction. The TM never calls these RMs with any form of xa_start(). An RM
declares dynamic registration in its switch (see Section 4.3 on page 21). An RM can
make this declaration only on its own behalf, and doing so does not change the TM’s
behaviour with respect to other RMs.

When an AP requests work from such an RM, before doing any work, the RM contacts
the TM by calling ax_reg(). The RM must call ax_reg() from the same thread of control
that the AP would use if it called ax_reg() directly. The TM returns to the RM the
appropriate XID if the AP is in a global transaction.

If the thread ends its involvement in the transaction branch (using xa_end()), then the
RM must re-register (using ax_reg()) with the TM if the AP calls it for additional work
in the global transaction. If the RM does not resume its participation, then the TM does
not call the RM again for that branch until the TM completes the branch.

If the RM calls ax_reg() and the AP is not in a global transaction, the TM informs the
RM, and remembers, that the RM is doing work outside any global transaction. In this
case, when the AP completes its work with the RM, the RM must notify the TM by
calling ax_unreg(). The RM must call ax_unreg() from the same thread of control from
which it called ax_reg(). Until then — that is, as long as the AP thread involves the RM
outside a global transaction — the TM neither lets the AP start a global transaction, nor
lets any RM register through the same thread to participate in one.

16 X/Open CAE Specification (1991)

Interface Overview Branch Completion

3.4 Branch Completion
A TM calls xa_prepare () to ask the RM to prepare to commit a transaction branch. The
RM places any resources it holds in a state such that it can either make any changes
permanent if the TM subsequently calls xa_commit(), or nullify any changes if the TM
calls xa_rollback (). An affirmative return from xa_prepare () guarantees that a
subsequent xa_commit() or xa_rollback () succeeds, even if the RM experiences a failure
after responding to xa_prepare ().

A TM calls xa_commit() to direct the RM to commit a transaction branch. The RM
applies permanently any changes it has made to shared resources, and releases any
resources it held on behalf of the branch. A TM calls xa_rollback () to ask the RM to roll
back a branch. The RM undoes any changes that it applied to shared resources, and
releases any resources it held.

Before a TM can call xa_prepare () for a transaction branch, all associations must be
completely ended with xa_end() (see Section 3.3 on page 14). Any thread can then
initiate branch completion. That is, the TM may supervise branch completion with a
separate thread from the AP threads that did work on behalf of the global transaction.

Optimisations

This section describes the use of xa_ routines in the standard two-phase commit
protocol. See Section 2.3.2 on page 8 for other permissible sequences of these calls.

Heuristic Decision

The X/Open DTP model lets RMs complete transaction branches heuristically (see
Section 2.3.3 on page 9). The RM cannot discard its knowledge of such a branch until
the TM permits this by calling xa_forget () for each branch.

Distributed Transaction Processing: The XA Specification 17

Synchronous, Non-blocking and Asynchronous Modes Interface Overview

3.5 Synchronous, Non-blocking and Asynchronous Modes

Synchronous

The xa_ functions typically operate synchronously: control does not return to the caller
until the operation is complete. Some routines, notably xa_start() (see Section 3.3 on
page 14) may block the calling thread.

Two other calling modes help the TM schedule its work when dealing with several
RMs:

Non-blocking

Certain xa_ calls direct the RM to operate synchronously with the caller but without
blocking it. If the RM cannot complete the call without blocking, it reports this
immediately.

Asynchronous

Most xa_ routines have a form by which the caller requests asynchrony. Asynchronous
calls should return immediately. The caller can subsequently call xa_complete () to test
the asynchronous operation for completion.

A TM might give an RM an asynchronous request (particularly a request to prepare to
commit a transaction branch) so that the TM could do other work in the meantime.
Within the same thread of control, a TM cannot use asynchrony to give additional work
to the same RM for the same branch; the only xa_ call a TM can give to the RM for the
same branch is xa_complete () to test that operation’s completion. However, for the
branch-completion routines: xa_commit(), xa_prepare () and xa_rollback (), and for
xa_forget (), the TM may issue multiple commands to the same RM from within the
same thread of control. Each of these commands must be for a different branch.

3.6 Failure Recovery
A TM must ensure orderly completion of all transaction branches. A TM calls
xa_recover () during failure recovery to get a list of all branches that an RM has prepared
or heuristically completed.

Unilateral RM Action

An RM can mark a transaction branch as rollback-only any time except after a
successful prepare. A TM detects this when the RM returns a rollback-only return
code. An RM can also unilaterally roll back and forget a branch any time except after a
successful prepare. A TM detects this when a subsequent call indicates that the RM
does not recognise the XID. The former technique gives the TM more information.

If a thread of control terminates, an RM must dissociate and roll back any associated
transaction branch. If an RM experiences machine failure or termination, it must also
unilaterally roll back all branches that have not successfully prepared.

18 X/Open CAE Specification (1991)

Chapter 4

The "xa.h" Header

This chapter specifies structure definitions, flags, and error codes to which conforming
products must adhere. It also declares the routines by which RMs call a TM. (Entry
points to an RM are contained in the RM’s switch; see Section 4.3 on page 21.) This is
the minimum content of an include file called "xa.h". Fully standardising this
information lets RMs be written independently of the TMs that use them. It also lets
users interchange TMs and RMs without recompiling.

Appendix A contains an "xa.h" header file with #define statements suitable for ANSI C
(see the referenced C standard) and Common Usage C implementations. This chapter
contains excerpts from the ANSI C code in "xa.h". The synopses in Chapter 5 also use
ANSI C.

4.1 Naming Conventions
The XA interface uses certain naming conventions to name its functions, flags and
return codes. All names that appear in "xa.h" are part of the XA name space. This
section describes the XA naming conventions.

• The negative (error) codes returned by the xa_ routines all begin with XAER_. Their
non-negative return codes all begin with XA_.

• The names of all TM functions that RMs call begin with ax_ (for example, ax_reg).
Their negative (error) return codes all begin with TMER_. Their non-negative
return codes all begin with TM_.

• Names of flags passed to XA routines, and of flags in the RM switch, begin with
TM.

4.2 Transaction Identification
The "xa.h" header defines a public structure called an XID to identify a transaction
branch. RMs and TMs both use the XID structure. This lets an RM work with several
TMs without recompilation.

The XID structure is specified in the C code below in struct xid_t. The XID contains a
format identifier, two length fields and a data field. The data field comprises at most
two contiguous components: a global transaction identifier (gtrid) and a branch
qualifier (bqual).

The gtrid_length element specifies the number of bytes (1-64) that constitute gtrid,
starting at the first byte of the data element (that is, at data[0]). The bqual_length
element specifies the number of bytes (1-64) that constitute bqual, starting at the first
byte after gtrid (that is, at data[gtrid_length]). Neither component in data is null-
terminated. The TM need not initialise any unused bytes in data .

Distributed Transaction Processing: The XA Specification 19

Transaction Identification The "xa.h" Header

Although "xa.h" constrains the length and byte alignment of the data element within an
XID, it does not specify the data’s contents. The only requirement is that both gtrid and
bqual, taken together, must be globally unique. The recommended way of achieving
global uniqueness is to use the naming rules specified for OSI CCR atomic action
identifiers (see the referenced OSI CCR specification). If OSI CCR naming is used, then
the XID’s formatID element should be set to 0; if some other format is used, then the
formatID element should be greater than 0. A value of −1 in formatID means that the
XID is null.

The RM must be able to map the XID to the recoverable work it did for the
corresponding branch. RMs may perform bitwise comparisons on the data
components of an XID for the lengths specified in the XID structure. Most XA routines
pass a pointer to the XID. These pointers are valid only for the duration of the call. If
the RM needs to refer to the XID after it returns from the call, it must make a local copy
before returning.

/ ∗
∗ Transaction branch identification: XID and NULLXID:
∗/

#define XIDDATASIZE 128 / ∗ size in bytes ∗/
#define MAXGTRIDSIZE 64 / ∗ maximum size in bytes of gtrid ∗/
#define MAXBQUALSIZE 64 / ∗ maximum size in bytes of bqual ∗/
struct xid_t {

long formatID; / ∗ format identifier ∗/
long gtrid_length; / ∗ value 1-64 ∗/
long bqual_length; / ∗ value 1-64 ∗/
char data[XIDDATASIZE];
};

typedef struct xid_t XID;
/ ∗

∗ A value of -1 in formatID means that the XID is null.
∗/

/ ∗
∗ Declarations of routines by which RMs call TMs:
∗/

extern int ax_reg(int, XID ∗, long);
extern int ax_unreg(int, long);

20 X/Open CAE Specification (1991)

The "xa.h" Header Resource Manager Switch

4.3 Resource Manager Switch
The TM administrator can add or remove an RM from the DTP system by simply
controlling the set of RMs linked to executable modules. Each RM must provide a
switch that gives the TM access to the RM’s xa_ routines. This lets the administrator
change the set of RMs linked with an executable module without having to recompile
the application. A different set of RMs and their switches may be linked into each
separate application executable module in the DTP system. Several instances of an RM
can share the RM’s switch structure.

An RM’s switch uses a structure called xa_switch_t. The switch contains the RM’s
name, non-null pointers to the RM’s entry points, a flag and a version word. The flags
tell whether the RM uses dynamic registration (see Section 3.3.1 on page 15), whether
the RM operates asynchronously (see Section 3.5 on page 18) and whether the RM
supports the migration of associations (see Section 3.3 on page 14). Section 4.4 on page
22 defines constants used as these flags. The RM cannot change these declarations
during the operation of the DTP system.

/ ∗
∗ XA Switch Data Structure
∗/

#define RMNAMESZ 32 / ∗ length of resource manager name, ∗/
/ ∗ including the null terminator ∗/

#define MAXINFOSIZE 256 / ∗ maximum size in bytes of xa_info strings, ∗/
/ ∗ including the null terminator ∗/

struct xa_switch_t {
char name[RMNAMESZ]; / ∗ name of resource manager ∗/
long flags; / ∗ options specific to the resource manager ∗/
long version; / ∗ must be 0 ∗/
int (∗xa_open_entry)(char ∗, int, long); / ∗ xa_open function pointer ∗/
int (∗xa_close_entry)(char ∗, int, long); / ∗ xa_close function pointer ∗/
int (∗xa_start_entry)(XID ∗, int, long); / ∗ xa_start function pointer ∗/
int (∗xa_end_entry)(XID ∗, int, long); / ∗ xa_end function pointer ∗/
int (∗xa_rollback_entry)(XID ∗, int, long);

/ ∗ xa_rollback function pointer ∗/
int (∗xa_prepare_entry)(XID ∗, int, long);

/ ∗ xa_prepare function pointer ∗/
int (∗xa_commit_entry)(XID ∗, int, long); / ∗ xa_commit function pointer ∗/
int (∗xa_recover_entry)(XID ∗, long, int, long);

/ ∗ xa_recover function pointer ∗/
int (∗xa_forget_entry)(XID ∗, int, long); / ∗ xa_forget function pointer ∗/
int (∗xa_complete_entry)(int ∗, int ∗, int, long);

/ ∗ xa_complete function pointer ∗/
};

Distributed Transaction Processing: The XA Specification 21

Flag Definitions The "xa.h" Header

4.4 Flag Definitions
The XA interface uses the flag definitions. For a TM to work with different RMs
without change or recompilation, each RM uses these flags, defined in the "xa.h"
header.

The "xa.h" header defines a constant, TMNOFLAGS, for use in situations where no
other flags are specified. An RM that does not use any flags to specify special features
in its switch (see Section 4.3 on page 21) should specify TMNOFLAGS. In addition,
TMs and RMs should use the same TMNOFLAGS constant as the flag argument in any
xa_ or ax_ call in which they do not use explicit options.

Flag definitions for the XA interface are as follows:

/ ∗
∗ Flag definitions for the RM switch
∗/

#define TMNOFLAGS 0x00000000L / ∗ no resource manager features
selected ∗/

#define TMREGISTER 0x00000001L / ∗ resource manager dynamically
registers ∗/

#define TMNOMIGRATE 0x00000002L / ∗ resource manager does not support
association migration ∗/

#define TMUSEASYNC 0x00000004L / ∗ resource manager supports
asynchronous operations ∗/

/ ∗
∗ Flag definitions for xa_ and ax_ routines
∗/

/ ∗ use TMNOFLAGS, defined above, when not specifying other flags ∗/
#define TMASYNC 0x80000000L / ∗ perform routine asynchronously ∗/
#define TMONEPHASE 0x40000000L / ∗ caller is using one-phase commit

optimisation ∗/
#define TMFAIL 0x20000000L / ∗ dissociates caller and marks

transaction branch rollback-only ∗/
#define TMNOWAIT 0x10000000L / ∗ return if blocking condition exists ∗/
#define TMRESUME 0x08000000L / ∗ caller is resuming association

with suspended transaction branch ∗/
#define TMSUCCESS 0x04000000L / ∗ dissociate caller from transaction

branch ∗/
#define TMSUSPEND 0x02000000L / ∗ caller is suspending, not ending,

association ∗/
#define TMSTARTRSCAN 0x01000000L / ∗ start a recovery scan ∗/
#define TMENDRSCAN 0x00800000L / ∗ end a recovery scan ∗/
#define TMMULTIPLE 0x00400000L / ∗ wait for any asynchronous operation ∗/
#define TMJOIN 0x00200000L / ∗ caller is joining existing transaction

branch ∗/
#define TMMIGRATE 0x00100000L / ∗ caller intends to perform migration ∗/

22 X/Open CAE Specification (1991)

The "xa.h" Header Return Codes

4.5 Return Codes
As with flag definitions, all TMs and RMs must ensure interchangeability by using
these return codes, defined in the "xa.h" header.

/ ∗
∗ ax_() return codes (transaction manager reports to resource manager)
∗/

#define TM_JOIN 2 / ∗ caller is joining existing transaction
branch ∗/

#define TM_RESUME 1 / ∗ caller is resuming association
with suspended transaction branch ∗/

#define TM_OK 0 / ∗ normal execution ∗/
#define TMER_TMERR -1 / ∗ an error occurred in the

transaction manager ∗/
#define TMER_INVAL -2 / ∗ invalid arguments were given ∗/
#define TMER_PROTO -3 / ∗ routine invoked in an improper context ∗/

/ ∗
∗ xa_() return codes (resource manager reports to transaction manager)
∗/

#define XA_RBBASE 100 / ∗ the inclusive lower bound of the
rollback codes ∗/

#define XA_RBROLLBACK XA_RBBASE /∗ the rollback was caused by an
unspecified reason ∗/

#define XA_RBCOMMFAIL XA_RBBASE+1 /∗ the rollback was caused by a
communication failure ∗/

#define XA_RBDEADLOCK XA_RBBASE+2 /∗ a deadlock was detected ∗/
#define XA_RBINTEGRITY XA_RBBASE+3 / ∗ a condition that violates the

integrity of the resources
was detected ∗/

#define XA_RBOTHER XA_RBBASE+4 /∗ the resource manager rolled back the
transaction branch for a reason not on
this list ∗/

#define XA_RBPROTO XA_RBBASE+5 /∗ a protocol error occurred in the
resource manager ∗/

#define XA_RBTIMEOUT XA_RBBASE+6 / ∗ a transaction branch took too long ∗/
#define XA_RBTRANSIENT XA_RBBASE+7 / ∗ may retry the transaction branch ∗/
#define XA_RBEND XA_RBTRANSIENT /∗ the inclusive upper bound of the

rollback codes ∗/

#define XA_NOMIGRATE 9 / ∗ resumption must occur where
suspension occurred ∗/

#define XA_HEURHAZ 8 / ∗ the transaction branch may have
been heuristically completed ∗/

#define XA_HEURCOM 7 / ∗ the transaction branch has been
heuristically committed ∗/

#define XA_HEURRB 6 / ∗ the transaction branch has been
heuristically rolled back ∗/

#define XA_HEURMIX 5 / ∗ the transaction branch has been
heuristically committed and rolled back ∗/

#define XA_RETRY 4 / ∗ routine returned with no effect and
may be reissued ∗/

Distributed Transaction Processing: The XA Specification 23

Return Codes The "xa.h" Header

#define XA_RDONLY 3 / ∗ the transaction branch was read-only and
has been committed ∗/

#define XA_OK 0 / ∗ normal execution ∗/

#define XAER_ASYNC -2 / ∗ asynchronous operation already outstanding ∗/
#define XAER_RMERR -3 / ∗ a resource manager error occurred in the

transaction branch ∗/
#define XAER_NOTA -4 / ∗ the XID is not valid ∗/
#define XAER_INVAL -5 / ∗ invalid arguments were given ∗/
#define XAER_PROTO -6 / ∗ routine invoked in an improper context ∗/
#define XAER_RMFAIL -7 / ∗ resource manager unavailable ∗/
#define XAER_DUPID -8 / ∗ the XID already exists ∗/
#define XAER_OUTSIDE -9 / ∗ resource manager doing work outside ∗/

/ ∗ global transaction ∗/

24 X/Open CAE Specification (1991)

Chapter 5

Reference Manual Pages

This chapter describes the interfaces to the XA service set. Reference manual pages
appear in alphabetical order, for each service in the XA interface. The ax_ routines are
provided by a TM for use by RMs. The xa_ routines are provided by each RM for use
by the TM.

The symbolic constants and error names are described in the "xa.h" header (see
Chapter 4). The state tables referred to in the reference manual pages appear in
Chapter 6.

Distributed Transaction Processing: The XA Specification 25

ax_reg () Reference Manual Pages

NAME
ax_reg — dynamically register a resource manager with a transaction manager

SYNOPSIS
#include "xa.h"

int
ax_reg(int rmid , XID ∗xid, long flags)

DESCRIPTION
A resource manager calls ax_reg() to inform a transaction manager that it is about to
perform work on behalf of an application thread of control. The transaction manager,
in turn, replies to the resource manager with an indication of whether or not that work
should be performed on behalf of a transaction branch. If the transaction manager
determines that the calling thread of control is involved in a branch, upon successful
return, xid points to a valid XID. If the resource manager’s work is outside any global
transaction, xid points to NULLXID. The caller is responsible for allocating the space to
which xid points.

A resource manager must call this function from the same thread of control from
which the application accesses the resource manager. A resource manager taking
advantage of this facility must have TMREGISTER set in the flags element of its
xa_switch_t structure (see Chapter 4). Moreover, ax_reg() returns failure,
[TMER_TMERR], when issued by a resource manager that has not set TMREGISTER.

When the resource manager calls ax_reg() for a new thread of control association (that
is, when [TM_RESUME] is not returned; see below), the transaction manager may
generate a unique branch qualifier within the returned XID.

If the transaction manager elects to reuse within ∗xid a branch qualifier previously
given to the resource manager, it informs the resource manager of this by returning
[TM_JOIN]. If the resource manager receives [TM_JOIN] and does not recognise ∗xid,
it must return a failure indication to the application.

If the resource manager is resuming work on a suspended transaction branch, it
informs the resource manager of this by returning [TM_RESUME]. When
[TM_RESUME] is returned, xid points to the same XID that was passed to the xa_end()
call that suspended the association. If the resource manager receives [TM_RESUME]
and does not recognise ∗xid, it must return a failure indication to the application.

If the transaction manager generated a new branch qualifier within the returned XID,
this thread is loosely-coupled in relation to the other threads in this same global
transaction. That is, the resource manager may treat this thread’s work as a separate
transaction with respect to its isolation policies. If the transaction manager reuses a
branch qualifier within the returned XID, this thread is tightly-coupled to the other
threads in the same transaction branch. A resource manager must guarantee that
tightly-coupled threads are treated as a single entity with respect to its isolation
policies and that no resource deadlock can occur within the transaction branch among
these tightly-coupled threads.

The implications of dynamically registering are as follows: when a thread of control
begins working on behalf of a transaction branch, the transaction manager calls
xa_start() for all resource managers known to the thread except those having

26 X/Open CAE Specification (1991)

Reference Manual Pages ax_reg ()

TMREGISTER set in their xa_switch_t structure. Thus, those resource managers with
this flag set must explicitly join a branch with ax_reg(). Secondly, when a thread of
control is working on behalf of a branch, a transaction manager calls xa_end() for all
resource managers known to the thread that either do not have TMREGISTER set in
their xa_switch_t structure or have dynamically registered with ax_reg().

The function’s first argument, rmid, is the integer that the resource manager received
when the transaction manager called xa_open(). It identifies the resource manager in
the thread of control.

The function’s last argument, flags , is reserved for future use and must be set to
TMNOFLAGS.

RETURN VALUE
The function ax_reg() has the following return values:

[TM_JOIN]
The resource manager is joining the work of an existing transaction branch. The
resource manager should make available enough transaction context so that
tightly-coupled threads are not susceptible to resource deadlock within the
branch. If the resource manager does not recognise ∗xid, it must return a failure
indication to the application.

[TM_RESUME]
The resource manager should resume work on a previously-suspended
transaction branch. The resource manager should make available at least the
transaction context that is specific to the resource manager, present at the time of
the suspend, as if the thread had effectively never been suspended, except that
other threads in the global transaction may have affected this context.

If the resource manager does not recognise ∗xid, it must return a failure indication
to the application. If the resource manager allows an association to be resumed in
a different thread from the one that suspended the work, and the transaction
manager expressed its intention to migrate the association (via the TMMIGRATE
flag on xa_end()), the current thread may be different from the one that suspended
the work. Otherwise, the current thread must be the same, or the resource
manager must return a failure indication to the application.

If ∗xid contains a reused branch qualifier, and the transaction manager has
multiple outstanding suspended thread associations for ∗xid, the following rules
apply:

• The transaction manager can have only one of them outstanding at any time
with TMMIGRATE set in flags .

• Moreover, the transaction manager cannot resume this association in a thread
that currently has a non-migratable suspended association.

These rules prevent ambiguity as to which context is restored.

[TM_OK]
Normal execution.

Distributed Transaction Processing: The XA Specification 27

ax_reg () Reference Manual Pages

[TMER_TMERR]
The transaction manager encountered an error in registering the resource
manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
ax_unreg(), xa_end(), xa_open(), xa_start().

WARNINGS
If xid does not point to a buffer that is at least as large as the size of an XID, ax_reg()
may overwrite the caller’s data space. In addition, the buffer must be properly aligned
(on a long word boundary) in the event that structure assignments are performed.

28 X/Open CAE Specification (1991)

Reference Manual Pages ax_unreg()

NAME
ax_unreg — dynamically unregister a resource manager with a transaction manager

SYNOPSIS
#include "xa.h"

int
ax_unreg(int rmid , long flags)

DESCRIPTION
A resource manager calls ax_unreg() to inform a transaction manager that it has
completed work, outside any global transaction, that it began after receiving the
NULLXID from ax_reg(). In addition, the resource manager is informing the
transaction manager that the accessing thread of control is free to participate (from the
resource manager’s perspective) in a global transaction. So long as any resource
manager in a thread of control is registered with a transaction manager and is
performing work outside any global transaction, that application thread cannot
participate in a global transaction.

A resource manager must call this function from the same thread of control that
originally called ax_reg(). A resource manager taking advantage of this facility must
have TMREGISTER set in the flags element of its xa_switch_t structure (see Chapter 4).
Moreover, ax_unreg() returns failure [TMER_TMERR] when issued by a resource
manager that has not set TMREGISTER.

The function’s first argument, rmid, is the integer that the resource manager received
when the transaction manager called xa_open(). It identifies the resource manager in
the thread of control.

The function’s last argument, flags , is reserved for future use and must be set to
TMNOFLAGS.

RETURN VALUE
ax_unreg() has the following return values:

[TM_OK]
Normal execution.

[TMER_TMERR]
The transaction manager encountered an error in unregistering the resource
manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
ax_reg().

Distributed Transaction Processing: The XA Specification 29

xa_close () Reference Manual Pages

NAME
xa_close — close a resource manager

SYNOPSIS
#include "xa.h"

int
xa_close(char ∗xa_info , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_close () to close a currently open resource manager in
the calling thread of control. Once closed, the resource manager cannot participate in
global transactions on behalf of the calling thread until it is re-opened.

The argument xa_info points to a null-terminated character string that may contain
instance-specific information for the resource manager. The maximum length of this
string is 256 bytes (including the null terminator). The argument xa_info may point to
an empty string if the resource manager does not require instance-specific information
to be available. The argument xa_info must not be a null pointer.

A transaction manager must call this function from the same thread of control that
accesses the resource manager. In addition, attempts to close a resource manager that
is already closed have no effect and return success, [XA_OK].

It is an error, [XAER_PROTO], for a transaction manager to call xa_close () within a
thread of control that is associated with a transaction branch (that is, the transaction
manager must call xa_end() before calling xa_close ()). In addition, if a transaction
manager calls xa_close () while an asynchronous operation is pending at a resource
manager, an error, [XAER_PROTO], is returned.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags must be set to one of the following values:

TMASYNC
This flag indicates that xa_close () shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager, this function fails, returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags .

RETURN VALUE
The function xa_close () has the following return values:

[XA_OK]
Normal execution.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

30 X/Open CAE Specification (1991)

Reference Manual Pages xa_close ()

[XAER_RMERR]
An error occurred when closing the resource.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
xa_complete (), xa_end(), xa_open().

WARNINGS
From the resource manager’s perspective, the pointer xa_info is valid only for the
duration of the call to xa_close (). That is, once the function completes, either
synchronously or asynchronously, the transaction manager is allowed to invalidate
where xa_info points. Resource managers are encouraged to use private copies of
∗xa_info after the function completes.

Distributed Transaction Processing: The XA Specification 31

xa_commit () Reference Manual Pages

NAME
xa_commit — commit work done on behalf of a transaction branch

SYNOPSIS
#include "xa.h"

int
xa_commit(XID ∗xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_commit() to commit the work associated with ∗xid. Any
changes made to resources held during the transaction branch are made permanent. A
transaction manager may call this function from any thread of control. All associations
for ∗xid must have been ended by using xa_end() with TMSUCCESS set in flags .

If a resource manager already completed the work associated with ∗xid heuristically,
this function merely reports how the resource manager completed the transaction
branch. A resource manager cannot forget about a heuristically completed branch until
the transaction manager calls xa_forget ().

A transaction manager must issue a separate xa_commit() for each transaction branch
that accessed the resource manager.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags (note that at most one of TMNOWAIT and
TMASYNC may be set):

TMNOWAIT
When this flag is set and a blocking condition exists, xa_commit() returns
[XA_RETRY] and does not commit the transaction branch (that is, the call has no
effect). The function xa_commit() must be called at a later time to commit the
branch. TMNOWAIT is ignored if TMONEPHASE is set.

TMASYNC
This flag indicates that xa_commit() shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager for the same XID, this function fails, returning
[XAER_ASYNC].

TMONEPHASE
The transaction manager must set this flag if it is using the one-phase commit
optimisation for the specified transaction branch.

TMNOFLAGS
This flag must be used when no other flags are set in flags .

32 X/Open CAE Specification (1991)

Reference Manual Pages xa_commit ()

RETURN VALUE
The function xa_commit() has the following return values:

[XA_HEURHAZ]
Due to some failure, the work done on behalf of the specified transaction branch
may have been heuristically completed.

[XA_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction
branch was committed.

[XA_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction
branch was rolled back.

[XA_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction
branch was partially committed and partially rolled back.

[XA_RETRY]
The resource manager is not able to commit the transaction branch at this time.
This value may be returned when a blocking condition exists and TMNOWAIT
was set. Note, however, that this value may also be returned even when
TMNOWAIT is not set (for example, if the necessary stable storage is currently
unavailable). This value cannot be returned if TMONEPHASE is set in flags . All
resources held on behalf of ∗xid remain in a prepared state until commitment is
possible. The transaction manager should reissue xa_commit() at a later time.

[XA_OK]
Normal execution.

[XA_RB∗]
The resource manager did not commit the work done on behalf of the transaction
branch. Upon return, the resource manager has rolled back the branch’s work and
has released all held resources. These values may be returned only if
TMONEPHASE is set in flags :

[XA_RBROLLBACK]
The resource manager rolled back the transaction branch for an unspecified
reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager rolled back the transaction branch for a reason not on
this list.

Distributed Transaction Processing: The XA Specification 33

xa_commit () Reference Manual Pages

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in committing the work performed on behalf of the transaction
branch and the branch’s work has been rolled back. Note that returning this error
signals a catastrophic event to a transaction manager since other resource
managers may successfully commit their work on behalf of this branch. This error
should be returned only when a resource manager concludes that it can never
commit the branch and that it cannot hold the branch’s resources in a prepared
state. Otherwise, [XA_RETRY] should be returned.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_NOTA]
The specified XID is not known by the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
xa_complete (), xa_forget (), xa_open(), xa_prepare (), xa_rollback ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration
of the call to xa_commit(). That is, once the function completes, either synchronously or
asynchronously, the transaction manager is allowed to invalidate where xid points.
Resource managers are encouraged to use private copies of ∗xid after the function
completes.

34 X/Open CAE Specification (1991)

Reference Manual Pages xa_complete ()

NAME
xa_complete — wait for an asynchronous operation to complete

SYNOPSIS
#include "xa.h"

int
xa_complete(int ∗handle , int ∗retval , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_complete () to wait for the completion of an
asynchronous operation. By default, this function waits for the operation pointed to by
handle to complete. The argument ∗handle must have previously been returned by a
function that had TMASYNC set. In addition, a transaction manager must call
xa_complete () from the same thread of control that received ∗handle .

Upon successful return, [XA_OK], retval points to the return value of the asynchronous
operation and ∗handle is no longer valid. If xa_complete () returns any other value,
∗handle , ∗retval , and any outstanding asynchronous operation are not affected. The
caller is responsible for allocating the space to which handle and retval point.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags :

TMMULTIPLE
When this flag is set, xa_complete () tests for the completion of any outstanding
asynchronous operation. Upon success, the resource manager places the handle of
the completed asynchronous operation in the area pointed to by ∗handle .

TMNOWAIT
When this flag is set, xa_complete () tests for the completion of an operation without
blocking. That is, if the operation denoted by ∗handle (or any operation, if
TMMULTIPLE is also set) has not completed, xa_complete () returns [XA_RETRY]
and does not wait for the operation to complete.

TMNOFLAGS
This flag must be used when no other flags are set in flags .

RETURN VALUE
The function xa_complete () has the following return values:

[XA_RETRY]
TMNOWAIT was set in flags and no asynchronous operation has completed.

[XA_OK]
Normal execution.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

[XAER_INVAL]
Invalid arguments were specified.

Distributed Transaction Processing: The XA Specification 35

xa_complete () Reference Manual Pages

SEE ALSO
xa_close (), xa_commit(), xa_end(), xa_forget (), xa_open(), xa_prepare (), xa_rollback (),
xa_start().

36 X/Open CAE Specification (1991)

Reference Manual Pages xa_end()

NAME
xa_end — end work performed on behalf of a transaction branch

SYNOPSIS
#include "xa.h"

int
xa_end(XID ∗xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_end() when a thread of control finishes, or needs to
suspend work on, a transaction branch. This occurs when the application completes a
portion of its work, either partially or in its entirety (for example, before blocking on
some event in order to let other threads of control work on the branch). When xa_end()
successfully returns, the calling thread of control is no longer actively associated with
the branch but the branch still exists. A transaction manager must call this function
from the same thread of control that accesses the resource manager.

A transaction manager always calls xa_end() for those resource managers that do not
have TMREGISTER set in the flags element of their xa_switch_t structure. Unlike
xa_start(), xa_end() is also issued to those resource managers that have previously
registered with ax_reg(). After the transaction manager calls xa_end(), it should no
longer consider the calling thread associated with that resource manager (although it
must consider the resource manager part of the transaction branch when it prepares
the branch.) Thus, a resource manager that dynamically registers must re-register after
an xa_end() that suspends its association (that is, after an xa_end() with TMSUSPEND
set in flags) but before the application thread of control continues to access the resource
manager.

The first argument, xid, is a pointer to an XID. The argument xid must point to the
same XID that was either passed to the xa_start() call or returned from the ax_reg() call
that established the thread’s association; otherwise, an error, [XAER_NOTA], is
returned.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags (note that one and only one of TMSUSPEND,
TMSUCCESS or TMFAIL must be set):

TMSUSPEND
Suspend a transaction branch on behalf of the calling thread of control. For a
resource manager that allows multiple threads of control, but only one at a time
working on a specific branch, it might choose to allow another thread of control to
work on the branch at this point. If this flag is not accompanied by the
TMMIGRATE flag, the transaction manager must resume or end the suspended
association in the current thread. TMSUSPEND cannot be used in conjunction
with either TMSUCCESS or TMFAIL.

TMMIGRATE
The transaction manager intends (but is not required) to resume the association in
a thread different from the calling one. This flag may be used only in conjunction
with TMSUSPEND and only if a resource manager does not have

Distributed Transaction Processing: The XA Specification 37

xa_end() Reference Manual Pages

TMNOMIGRATE set in the flags element of its xa_switch_t structure. Setting
TMMIGRATE in flags, while another thread’s association for ∗xid is currently
suspended with TMMIGRATE, makes xa_end() fail, returning [XAER_PROTO].
This is because a transaction manager can have at any given time at most one
suspended thread association migrating for a particular transaction branch. If this
flag is not used, a transaction manager is required to resume or end the association
in the current thread.

TMSUCCESS
The portion of work has succeeded. This flag cannot be used in conjunction with
either TMSUSPEND or TMFAIL.

TMFAIL
The portion of work has failed. A resource manager might choose to mark a
transaction branch as rollback-only at this point. In fact, a transaction manager
does so for the global transaction. If a resource manager chooses to do so also,
xa_end() returns one of the [XA_RB∗] values. TMFAIL cannot be used in
conjunction with either TMSUSPEND or TMSUCCESS.

TMASYNC
This flag indicates that xa_end() shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager for the same XID, this function fails, returning
[XAER_ASYNC].

RETURN VALUE
The function xa_end() has the following return values:

[XA_NOMIGRATE]
The resource manager was unable to prepare the transaction context for migration.
However, the resource manager has suspended the association. The transaction
manager can resume the association only in the current thread. This code may be
returned only when both TMSUSPEND and TMMIGRATE are set in flags . A
resource manager that sets TMNOMIGRATE in the flags element of its xa_switch_t
structure need not return [XA_NOMIGRATE].

[XA_OK]
Normal execution.

[XA_RB∗]
The resource manager has dissociated the transaction branch from the thread of
control and has marked rollback-only the work performed on behalf of ∗xid. The
following values may be returned regardless of the setting of flags :

[XA_RBROLLBACK]
The resource manager marked the transaction branch rollback-only for an
unspecified reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

38 X/Open CAE Specification (1991)

Reference Manual Pages xa_end()

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager marked the transaction branch rollback-only for a
reason not on this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in dissociating the transaction branch from the thread of control.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_NOTA]
The specified XID is not known by the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
ax_reg(), xa_complete (), xa_open(), xa_start().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration
of the call to xa_end(). That is, once the function completes, either synchronously or
asynchronously, the transaction manager is allowed to invalidate where xid points.
Resource managers are encouraged to use private copies of ∗xid after the function
completes.

Distributed Transaction Processing: The XA Specification 39

xa_forget () Reference Manual Pages

NAME
xa_forget — forget about a heuristically completed transaction branch

SYNOPSIS
#include "xa.h"

int
xa_forget(XID ∗xid , int rmid , long flags)

DESCRIPTION
A resource manager that heuristically completes work done on behalf of a transaction
branch must keep track of that branch along with the decision (that is, heuristically
committed, rolled back, or mixed) until told otherwise. The transaction manager calls
xa_forget () to permit the resource manager to erase its knowledge of ∗xid. Upon
successful return, [XA_OK], ∗xid is no longer valid (from the resource manager’s point
of view). A transaction manager may call this function from any thread of control.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags , must be set to one of the following values:

TMASYNC
This flag indicates that xa_forget () shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager for the same XID, this function fails, returning
[XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags .

RETURN VALUE
The function xa_forget () has the following return values:

[XA_OK]
Normal execution.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in the resource manager and the resource manager has not
forgotten the transaction branch.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_NOTA]
The specified XID is not known by the resource manager as a heuristically
completed XID.

40 X/Open CAE Specification (1991)

Reference Manual Pages xa_forget ()

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
xa_commit(), xa_complete (), xa_open(), xa_recover (), xa_rollback ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration
of the call to xa_forget (). That is, once the function completes, either synchronously or
asynchronously, the transaction manager is allowed to invalidate where xid points.
Resource managers are encouraged to use private copies of ∗xid after the function
completes.

Distributed Transaction Processing: The XA Specification 41

xa_open () Reference Manual Pages

NAME
xa_open — open a resource manager

SYNOPSIS
#include "xa.h"

int
xa_open(char ∗xa_info , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_open() to initialise a resource manager and prepare it
for use in a distributed transaction processing environment. It applies to resource
managers that support the notion of open and must be called before any other resource
manager (xa_) calls are made.

The argument xa_info points to a null-terminated character string that may contain
instance-specific information for the resource manager. The maximum length of this
string is 256 bytes (including the null terminator). The argument xa_info may point to
an empty string if the resource manager does not require instance-specific information
to be available. The argument xa_info must not be a null pointer.

The argument rmid, an integer assigned by the transaction manager, uniquely identifies
the called resource manager instance within the thread of control. The transaction
manager passes the rmid on subsequent calls to XA routines to identify the resource
manager. This identifier remains constant until the transaction manager in this thread
closes the resource manager.

If the resource manager supports multiple instances, the transaction manager can call
xa_open() more than once for the same resource manager. The transaction manager
generates a new rmid value for each call, and must use different values for ∗xa_info on
each call, typically to identify the respective resource domain.

A transaction manager must call this function from the same thread of control that
accesses the resource manager. In addition, attempts to open a resource manager
instance that is already open have no effect and return success, [XA_OK].

The function’s last argument, flags , must be set to one of the following values:

TMASYNC
This flag indicates that xa_open() shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager, this function fails, returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags .

RETURN VALUE
The function xa_open() has the following return values:

[XA_OK]
Normal execution.

42 X/Open CAE Specification (1991)

Reference Manual Pages xa_open ()

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred when opening the resource.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
xa_close (), xa_complete ().

WARNINGS
From the resource manager’s perspective, the pointer xa_info is valid only for the
duration of the call to xa_open(). That is, once the function completes, either
synchronously or asynchronously, the transaction manager is allowed to invalidate
where xa_info points. Resource managers are encouraged to use private copies of
∗xa_info after the function completes.

Distributed Transaction Processing: The XA Specification 43

xa_prepare () Reference Manual Pages

NAME
xa_prepare — prepare to commit work done on behalf of a transaction branch

SYNOPSIS
#include "xa.h"

int
xa_prepare(XID ∗xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_prepare () to request a resource manager to prepare for
commitment any work performed on behalf of ∗xid. The resource manager places any
resources it held or modified in such a state that it can make the results permanent
when it receives a commit request (that is, when the transaction manager calls
xa_commit()). If the transaction branch has already been prepared with xa_prepare (),
subsequent calls to xa_prepare () return [XAER_PROTO]. A transaction manager may
call this function from any thread of control. All associations for ∗xid must have been
ended by using xa_end() with TMSUCCESS set in flags .

Once this function successfully returns, the resource manager must guarantee that the
transaction branch may be either committed or rolled back regardless of failures. A
resource manager cannot erase its knowledge of a branch until the transaction manager
calls either xa_commit() or xa_rollback () to complete the branch.

As an optimisation, a resource manager may indicate either that the work performed
on behalf of a transaction branch was read-only or that the resource manager was not
accessed on behalf of a branch (that is, xa_prepare () may return [XA_RDONLY]). In
either case, the resource manager may release all resources and forget about the
branch.

A transaction manager must issue a separate xa_prepare () for each transaction branch
that accessed the resource manager on behalf of the global transaction.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags , must be set to one of the following values:

TMASYNC
This flag indicates that xa_prepare () shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager for the same XID, this function fails, returning
[XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags .

44 X/Open CAE Specification (1991)

Reference Manual Pages xa_prepare ()

RETURN VALUE
The function xa_prepare () has the following return values:

[XA_RDONLY]
The transaction branch was read-only and has been committed.

[XA_OK]
Normal execution.

[XA_RB∗]
The resource manager did not prepare to commit the work done on behalf of the
transaction branch. Upon return, the resource manager has rolled back the
branch’s work and has released all held resources. The following values may be
returned:

[XA_RBROLLBACK]
The resource manager rolled back the transaction branch for an unspecified
reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager rolled back the transaction branch for a reason not on
this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
The resource manager encountered an error in preparing to commit the
transaction branch’s work. The specified XID may or may not have been prepared.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable. The specified
XID may or may not have been prepared.

Distributed Transaction Processing: The XA Specification 45

xa_prepare () Reference Manual Pages

[XAER_NOTA]
The specified XID is not known by the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
xa_commit(), xa_complete (), xa_open(), xa_rollback ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration
of the call to xa_prepare (). That is, once the function completes, either synchronously or
asynchronously, the transaction manager is allowed to invalidate where xid points.
Resource managers are encouraged to use private copies of ∗xid after the function
completes.

46 X/Open CAE Specification (1991)

Reference Manual Pages xa_recover ()

NAME
xa_recover — obtain a list of prepared transaction branches from a resource manager

SYNOPSIS
#include "xa.h"

int
xa_recover(XID ∗xids , long count , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_recover () during recovery to obtain a list of transaction
branches that are currently in a prepared or heuristically completed state. The caller
points xids to an array into which the resource manager places XIDs for these
transactions, and sets count to the maximum number of XIDs that fit into that array.

So that all XIDs may be returned irrespective of the size of the array xids , one or more
xa_recover () calls may be used within a single recovery scan. The flags parameter to
xa_recover () defines when a recovery scan should start or end, or start and end. The
start of a recovery scan moves a cursor to the start of a list of prepared and
heuristically completed transactions. Throughout the recovery scan the cursor marks
the current position in that list. Each call advances the cursor past the set of XIDs it
returns.

Two consecutive complete recovery scans return the same list of transaction branches
unless a transaction manager calls xa_commit(), xa_forget (), xa_prepare (), or xa_rollback ()
for that resource manager, or unless that resource manager heuristically completes
some branches, between the two recovery scans.

A transaction manager may call this function from any thread of control, but all calls in
a given recovery scan must be made by the same thread.

Upon success, xa_recover () places zero or more XIDs in the space pointed to by xids .
The function returns the number of XIDs it has placed there. If this value is less than
count, there are no more XIDs to recover and the current scan ends. (That is, the
transaction manager need not call xa_recover () again with TMENDRSCAN set in flags .)
Multiple invocations of xa_recover () retrieve all the prepared and heuristically
completed transaction branches.

It is the transaction manager’s responsibility to ignore XIDs that do not belong to it.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags :

TMSTARTRSCAN
This flag indicates that xa_recover () should start a recovery scan for the thread of
control and position the cursor to the start of the list. XIDs are returned from that
point. If a recovery scan is already open, the effect is as if the recovery scan were
ended and then restarted.

TMENDRSCAN
This flag indicates that xa_recover () should end the recovery scan after returning
the XIDs. If this flag is used in conjunction with TMSTARTRSCAN, the single
xa_recover () call starts and then ends a scan.

Distributed Transaction Processing: The XA Specification 47

xa_recover () Reference Manual Pages

TMNOFLAGS
This flag must be used when no other flags are set in flags . A recovery scan must
already be started. XIDs are returned starting at the current cursor position.

RETURN VALUE
The function xa_recover () has the following return values:

[≥ 0]
As a return value, xa_recover () normally returns the total number of XIDs it
returned in ∗xids .

[XAER_RMERR]
An error occurred in determining the XIDs to return.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_INVAL]
The pointer xids is NULL and count is greater than 0, count is negative, an invalid
flags was specified, or the thread of control does not have a recovery scan open
and did not specify TMSTARTRSCAN in flags .

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_commit(), xa_forget (), xa_open(), xa_rollback ().

WARNINGS
If xids points to a buffer that cannot hold all of the XIDs requested, xa_recover () may
overwrite the caller’s data space.

48 X/Open CAE Specification (1991)

Reference Manual Pages xa_rollback ()

NAME
xa_rollback — roll back work done on behalf of a transaction branch

SYNOPSIS
#include "xa.h"

int
xa_rollback(XID ∗xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_rollback () to roll back the work performed at a resource
manager on behalf of the transaction branch. A branch must be capable of being rolled
back until it has successfully committed. Any resources held by the resource manager
for the branch are released and those modified are restored to their values at the start
of the branch. A transaction manager may call this function from any thread of control.

A resource manager can forget a rolled back transaction branch either after it has
notified all associated threads of control of the branch’s failure (by returning
[XAER_NOTA] or [XA_RB∗] on a call to xa_end()), or after the transaction manager
calls it using xa_start() with TMRESUME set in flags . The transaction manager must
ensure that no new threads of control are allowed to access a resource manager with a
rolled back (or marked rollback-only) XID.

In addition, xa_rollback () must guarantee that forward progress can be made in
releasing resources and restoring them to their initial values. That is, because this
function may be used by a transaction manager to resolve deadlocks (defined in a
manner dependent on the transaction manager), xa_rollback () must not itself be
susceptible to indefinite blocking.

If a resource manager already completed the work associated with ∗xid heuristically,
this function merely reports how the resource manager completed the transaction
branch. A resource manager cannot forget about a heuristically completed branch until
the transaction manager calls xa_forget ().

A transaction manager must issue a separate xa_rollback () for each transaction branch
that accessed the resource manager on behalf of the global transaction.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags , must be set to one of the following values:

TMASYNC
This flag indicates that xa_rollback () shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager for the same XID, this function fails, returning
[XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags .

Distributed Transaction Processing: The XA Specification 49

xa_rollback () Reference Manual Pages

RETURN VALUE
The function xa_rollback () has the following return values:

[XA_HEURHAZ]
Due to some failure, the work done on behalf of the specified transaction branch
may have been heuristically completed. A resource manager may return this
value only if it has successfully prepared ∗xid.

[XA_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction
branch was committed. A resource manager may return this value only if it has
successfully prepared ∗xid.

[XA_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction
branch was rolled back. A resource manager may return this value only if it has
successfully prepared ∗xid.

[XA_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction
branch was partially committed and partially rolled back. A resource manager
may return this value only if it has successfully prepared ∗xid.

[XA_OK]
Normal execution.

[XA_RB∗]
The resource manager has rolled back the transaction branch’s work and has
released all held resources. These values are typically returned when the branch
was already marked rollback-only. The following values may be returned:

[XA_RBROLLBACK]
The resource manager rolled back the transaction branch for an unspecified
reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager rolled back the transaction branch for a reason not on
this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

50 X/Open CAE Specification (1991)

Reference Manual Pages xa_rollback ()

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in rolling back the transaction branch. The resource manager is
free to forget about the branch when returning this error so long as all accessing
threads of control have been notified of the branch’s state.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_NOTA]
The specified XID is not known by the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
xa_commit(), xa_complete (), xa_forget (), xa_open(), xa_prepare ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration
of the call to xa_rollback (). That is, once the function completes, either synchronously
or asynchronously, the transaction manager is allowed to invalidate where xid points.
Resource managers are encouraged to use private copies of ∗xid after the function
completes.

Distributed Transaction Processing: The XA Specification 51

xa_start () Reference Manual Pages

NAME
xa_start — start work on behalf of a transaction branch

SYNOPSIS
#include "xa.h"

int
xa_start(XID ∗xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_start() to inform a resource manager that an application
may do work on behalf of a transaction branch. Since many threads of control can
participate in a branch and each one may be invoked more than once, xa_start() must
recognise whether or not the XID exists. If another thread is accessing the calling
thread’s resource manager for the same branch, xa_start() may block and wait for the
active thread to release control of the branch (via xa_end()). A transaction manager
must call this function from the same thread of control that accesses the resource
manager. If the resource manager is doing work outside any global transaction on
behalf of the application, xa_start() returns [XAER_OUTSIDE].

A transaction manager calls xa_start() only for those resource managers that do not
have TMREGISTER set in the flags element of their xa_switch_t structure. Resource
managers with TMREGISTER set must use ax_reg() to join a transaction branch (see
ax_reg() for details).

The first argument, xid, is a pointer to the XID that a resource manager must associate
with the calling thread of control. The transaction manager guarantees the XID to be
unique for different transaction branches. The transaction manager may generate a
new branch qualifier within the XID when it calls xa_start() for a new thread of control
association (that is, when TMRESUME is not set in flags ; see TMRESUME below). If
the transaction manager elects to reuse a branch qualifier previously given to the
resource manager for the XID, the transaction manager must inform the resource
manager that it is doing so (by setting TMJOIN in flags ; see TMJOIN below).

If the transaction manager generates a new branch qualifier in the XID, this thread is
loosely-coupled to the other threads in the same branch. That is, the resource manager
may treat this thread’s work as a separate global transaction with respect to its
isolation policies. If the transaction manager reuses a branch qualifier in the XID, this
thread is tightly-coupled to the other threads that share the branch. An RM must
guarantee that tightly-coupled threads are treated as a single entity with respect to its
isolation policies and that no deadlock occurs within the branch among these tightly-
coupled threads.

The argument rmid, the same integer that the transaction manager generated when
calling xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags :

TMJOIN
This flag indicates that the thread of control is joining the work of an existing
transaction branch. The resource manager should make available enough
transaction context so that tightly-coupled threads are not susceptible to resource
deadlock within the branch.

52 X/Open CAE Specification (1991)

Reference Manual Pages xa_start ()

If a resource manager does not recognise ∗xid, the function fails, returning
[XAER_NOTA]. Note that this flag cannot be used in conjunction with
TMRESUME.

TMRESUME
This flag indicates that a thread of control is resuming work on the specified
transaction branch. The resource manager should make available at least the
transaction context that is specific to the resource manager, present at the time of
the suspend, as if the thread had effectively never been suspended, except that
other threads in the global transaction may have affected this context.

If a resource manager does not recognise ∗xid, the function fails, returning
[XAER_NOTA]. If the resource manager allows an association to be resumed in a
different thread from the one that suspended the work, and the transaction
manager expressed its intention to migrate the association (via the TMMIGRATE
flag on xa_end()), the current thread may be different from the one that suspended
the work. Otherwise, the current thread must be the same, or the resource
manager returns [XAER_PROTO]. When TMRESUME is set, the transaction
manager uses the same XID it used in the xa_end() call that suspended the
association.

If ∗xid contains a reused branch qualifier, and the transaction manager has
multiple outstanding suspended thread associations for ∗xid, the following rules
apply:

• The transaction manager can have only one of them outstanding at any time
with TMMIGRATE set in flags .

• Moreover, the transaction manager cannot resume this association in a thread
that currently has a non-migratable suspended association.

These rules prevent ambiguity as to which context is restored.

TMNOWAIT
When this flag is set and a blocking condition exists, xa_start() returns
[XA_RETRY] and the resource manager does not associate the calling thread of
control with ∗xid (that is, the call has no effect). Note that this flag cannot be used
in conjunction with TMASYNC.

TMASYNC
This flag indicates that xa_start() shall be performed asynchronously. Upon
success, the function returns a positive value (called a handle) that the caller can
use as an argument to xa_complete () to wait for the operation to complete. If the
calling thread of control already has an asynchronous operation pending at the
same resource manager, this function fails, returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags .

RETURN VALUE
The function xa_start() has the following return values:

[XA_RETRY]
TMNOWAIT was set in flags and a blocking condition exists.

Distributed Transaction Processing: The XA Specification 53

xa_start () Reference Manual Pages

[XA_OK]
Normal execution.

[XA_RB∗]
The resource manager has not associated the transaction branch with the thread of
control and has marked ∗xid rollback-only. The following values may be returned
regardless of the setting of flags :

[XA_RBROLLBACK]
The resource manager marked the transaction branch rollback-only for an
unspecified reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager marked the transaction branch rollback-only for a
reason not on this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags , and either the maximum number of outstanding
asynchronous operations has been exceeded, or TMUSEASYNC is not set in the
flags element of the resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in associating the transaction branch with the thread of control.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_DUPID]
If neither TMRESUME nor TMJOIN was set in flags (indicating the initial use of
∗xid) and the XID already exists within the resource manager, the resource
manager must return [XAER_DUPID]. The resource manager failed to associate
the transaction branch with the thread of control.

[XAER_OUTSIDE]
The resource manager is doing work outside any global transaction on behalf of
the application.

54 X/Open CAE Specification (1991)

Reference Manual Pages xa_start ()

[XAER_NOTA]
Either TMRESUME or TMJOIN was set in flags , and the specified XID is not
known by the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The routine was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see
above) in flags .

SEE ALSO
ax_reg(), xa_complete (), xa_end(), xa_open().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration
of the call to xa_start(). That is, once the function completes, either synchronously or
asynchronously, the transaction manager is allowed to invalidate where xid points.
Resource managers are encouraged to use private copies of ∗xid after the function
completes.

Distributed Transaction Processing: The XA Specification 55

Reference Manual Pages

56 X/Open CAE Specification (1991)

Chapter 6

State Tables

This chapter contains state tables that show legal calling sequences for the XA routines.
TMs must sequence their use of the XA routines so that the calling thread of control
makes legal transitions through each applicable table in this chapter. That is, any TM
must, on behalf of each AP thread of control:

• open and close each RM as shown in Table 6-1 on page 58

• associate itself with, and dissociate itself from, transaction branches as shown in
Table 6-2 on page 59 or Table 6-3 on page 60, whichever applies

• advance any transaction branch toward completion through legal transitions as
shown in Table 6-4 on page 62

• make legal transitions through Table 6-5 on page 63, whenever the TM calls XA
routines in the asynchronous mode.

Table 6-5 on page 63 is the only table that addresses the asynchronous mode of XA
routines. The other tables also describe routines that can be called asynchronously. In
this case, the tables view the XA call that initiates an operation, and the xa_complete ()
call that shows that the operation is complete, as a single event.

Interpretation of the Tables

A single call may make transitions in more than one of the state tables. Services that
are not pertinent to a given state table are omitted from that table.

All the tables describe the state of a thread of control with respect to a particular RM.
That is, the tables indicate the validity of a sequence of XA calls only if the calls all
pertain to the same RM. The thread of control could be dealing with other RMs at the
same time, which might be in entirely different states. Each state table indicates the
valid initial state or states for such a sequence; it is not always the leftmost state (the
state with the zero subscript).

Table 6-2 on page 59, Table 6-3 on page 60 and Table 6-4 on page 62 describe the
sequence of calls with respect to the progress of a particular XID. Other XIDs within
the same RM thread of control may be in different states as they progress from initial
creation through completion, except that a thread can have only one active association
at a time. Thus, while one XID may be actively associated in a thread of control, the
same thread of control may make branch completion calls for other XIDs.

An entry under a particular state in the table asserts that an XA routine can be called in
that state, and shows the resulting state. A blank entry asserts that it is an error to call
the routine in that state. The routine should return the protocol error [XAER_PROTO],
unless another error code that gives more specific information also applies.

Distributed Transaction Processing: The XA Specification 57

State Tables

Notation

Sometimes a routine makes a state transition only when the caller gives it certain input,
or only when the routine returns certain output (such as a return code). Specific state
table entries describe these cases. The tables describe input to the routine in
parentheses, even though that may not be the exact syntax used; for example,
xa_end(TMFAIL) describes a call to xa_end() in which the caller sets the TMFAIL bit in
the flags argument. The tables denote output from the routine, including return status,
using an arrow (→) followed by the specific output.

For example, the legend

xa_end → [XA_RB]

describes the case where a call to xa_end() returns one of the [XA_RB∗] codes.

A general state table entry (one that does not show flags or output values) describes all
remaining cases of calls to that routine. These general entries assume the routine
returns success. (The xa_ routines return the [XA_OK] code; the ax_ routines return
[TM_OK].) Calls that return failure do not make state transitions, except where
described by specific state table entries.

The notation xa_∗ refers to all applicable xa_ routines.

6.1 Resource Manager Initialisation
For each thread of control, each RM is either open or closed. The initial state is closed
(R0). The xa_open() and xa_close () routines move an RM between these states.
Redundant uses of these routines are valid, as Table 6-1 shows:

Resource Manager States
XA Routines Un-initialised Initialised

R0 R1

xa_open() R1 R1
xa_close R0 R0

Table 6-1 State Table for Resource Manager Initialisation

A transition to R1 enables the use of Table 6-2 on page 59 to Table 6-4 on page 62
inclusive. The state R0 appears in these tables to illustrate that closing an RM
precludes its use in global transactions. At this point, Table 6-1 governs legal
sequences.

In Table 6-2 on page 59 to Table 6-4 on page 62 a return of [XAER_RMFAIL] on any
routine causes a state transition in that thread to state R0.

58 X/Open CAE Specification (1991)

State Tables Association of Threads of Control with Transactions

6.2 Association of Threads of Control with Transactions
Table 6-2 shows the state of an association between a thread of control and a
transaction branch. (See Table 6-3 on page 60 for RMs that dynamically register with a
TM.) Valid initial states of association for a thread of control are T0 and T2. (The
Association Suspended state, T2, includes the case where a thread has suspended an
association migratably. After returning to T0, any thread can re-enter this table in
column T2 to resume or end that other association.)

Table 6-2 makes the following assumptions:

• The calling thread remains in state R1.

• The RM does not have TMREGISTER set in its switch.

• The caller passes the same rmid and XID as arguments to each applicable routine
listed below.

Table 6-2 shows the effect of xa_start() and xa_end() on the thread of control’s
association with a single transaction branch. These routines may also change the state
of the branch itself. Therefore, Table 6-4 on page 62 further constrains their use.

If a thread suspends its association, it can perform work on behalf of other transaction
branches before resuming the suspended association.

Transaction Branch Association States
XA Routines Not Associated Association

Associated Suspended
T0 T1 T2

xa_start () T1
xa_start (TMRESUME) T1
xa_start (TMRESUME) → [XA_RB] T0
xa_end(TMSUSPEND) T2
xa_end(TMSUSPEND) → [XA_RB] T0
xa_end(TMSUCCESS) T0 T0
xa_end(TMFAIL) T0 T0
xa_open() T0 T1 T2
xa_recover() T0 T1 T2
xa_close () R0 R0
xa_∗() → [XAER_RMFAIL] R0 R0 R0

Table 6-2 State Table for Transaction Branch Association

Distributed Transaction Processing: The XA Specification 59

Association of Threads of Control with Transactions State Tables

6.2.1 Dynamic Registration of Threads

Table 6-3 shows the state of an association between a thread of control and a
transaction branch. This table is for RMs that dynamically register with a TM. Valid
initial states in Table 6-3 are D0 and D2. (The Association Suspended state, D2, includes
the case where a thread has suspended an association migratably. After returning to
D0, any thread can re-enter this table in column D2 to resume or end that other
association.)

The top half of the table shows the legal sequence of calls for an RM thread of control.
The bottom half of the table shows the legal sequence of calls for a TM thread of
control. The thread of control calling these routines must comply with the applicable
half of the table.

Table 6-3 makes the following assumptions:

• The TM calling thread remains in state R1.

• The RM has TMREGISTER set in its switch.

• The caller passes the same rmid and XID as arguments to each applicable routine
listed below.

• The same RM and XID are used for the dynamic registration functions.

Table 6-3 defines the behaviour of a single transaction branch in a thread. If a thread
suspends its association, it can perform work on behalf of other branches before
resuming the suspended association.

Transaction Branch Association States
XA Routines Not Registered Registration Registered with

Registered with Suspended NULLXID
Valid XID

D0 D1 D2 D3

Resource Manager Calls
ax_reg → valid XID D1
ax_reg → NULLXID D3
ax_reg → [TM_RESUME] D1
ax_unreg D0

Transaction Manager Calls
xa_end(TMSUSPEND) D2
xa_end(TMSUSPEND) → [XA_RB] D0
xa_end(TMSUCCESS) D0 D0
xa_end(TMFAIL) D0 D0
xa_open() D0 D1 D2 D3
xa_recover() D0 D1 D2 D3
xa_close () R0 R0
xa_∗() → [XAER_RMFAIL] R0 R0 R0 R0

Table 6-3 State Table for Transaction Branch Association (Dynamic Registration)

60 X/Open CAE Specification (1991)

State Tables Transaction States

6.3 Transaction States
Table 6-4 on page 62 shows the commitment protocol for a transaction branch. Any
state listed in Table 6-4 on page 62 except state S1 is a valid initial state for a thread of
control. The table applies to sequential calls by a thread of control that:

• remains in state R1

• passes the same XID in each xa_ call that requires an XID.

Table 6-4 on page 62 shows the effect of xa_start() and xa_end() on the state of a
transaction branch. These routines may also change the thread’s association with the
branch. Therefore, Table 6-2 on page 59 and Table 6-3 on page 60 further constrain their
use.

Table 6-4 on page 62 does not apply to uses of xa_end(TMSUSPEND),
xa_start(TMRESUME) or ax_reg in which [TM_RESUME] is returned; the uses of these
are constrained by Table 6-2 on page 59 and Table 6-3 on page 60 and the following
rules:

• xa_end(TMSUSPEND|TMMIGRATE) may be used only if no other thread
association for this branch was suspended with the TMMIGRATE flag. (This rule
ensures that there exists at most one migratable suspended association for a
branch.)

• xa_start(TMRESUME) may be used, and ax_reg may return [TM_RESUME], only on
a branch that has at least one suspended association. That suspended association
must either have been suspended non-migratably by the acting thread or
suspended migratably by any thread. If both conditions are true, the association
which was suspended non-migratably by the acting thread is the one resumed.

• xa_end(TMSUCCESS) may be used only on a branch that is associated with the
current thread or that has at least one suspended association. If the branch is
associated with the current thread, it is that association which is ended. Otherwise,
a suspended association ends, as though an implicit xa_start(TMRESUME) were
performed (see above) before the xa_end(TMSUCCESS).

Distributed Transaction Processing: The XA Specification 61

Transaction States State Tables

Transaction Branch States
XA Routines Non-existent Active Idle Prepared Rollback Heuristically

Transaction Only Completed
S0 S1 S2 S3 S4 S5

† xa_start () S1 S1
‡ xa_start () → [XA_RB] S4

xa_end() S2
‡ xa_end() → [XA_RB] S4

xa_prepare() S3
xa_prepare() → S0

‡ [XA_RDONLY] or
[XA_RB]

xa_prepare() → S2
[XAER_RMERR]

xa_commit() → S0 S0
[XA_OK] or
[XAER_RMERR]

‡ xa_commit() → [XA_RB] S0
xa_commit() → S3

[XA_RETRY]
xa_commit() → S5 S5 S5

‡ [XA_HEUR]
xa_rollback () → S0 S0 S0

‡ [XA_OK] or [XA_RB] or
[XAER_RMERR]

xa_rollback () → S5 S5 S5
‡ [XA_HEUR]

xa_forget () S0
xa_forget () → S5

[XAER_RMERR]
xa_open() S0 S1 S2 S3 S4 S5
xa_recover() S0 S1 S2 S3 S4 S5
xa_close () R0 R0 R0 R0 R0
xa_∗() → R0 R0 R0 R0 R0 R0

[XAER_RMFAIL]

Table 6-4 State Table for Transaction Branches

Notes:

† This row also applies when an applicable RM calls ax_reg and the TM
informs the RM that its work is on behalf of a transaction branch.

‡ [XA_HEUR] denotes any of [XA_HEURCOM], [XA_HEURRB],
[XA_HEURMIX], or [XA_HEURHAZ]. [XA_RB] denotes any return
value with a prefix [XA_RB.

62 X/Open CAE Specification (1991)

State Tables Asynchronous Operations

6.4 Asynchronous Operations
Table 6-5 describes asynchronous operations. The preceding tables do not take into
account asynchronous operations.

Table 6-5 illustrates that once a TM thread makes an asynchronous request to an RM on
behalf of an XID, the only valid request the TM thread can give the same RM for that
XID is the corresponding xa_complete (). For those routines that do not take an XID, the
thread must wait for the operation’s completion before issuing another request to that
same RM. The only routines by which the TM can give additional work to the same
RM are xa_commit(), xa_forget (), xa_prepare (), and xa_rollback ().

The valid initial state for a thread of control is A0.

The asynchronous calls (with TMASYNC) achieve a state transition in Table 6-5 when
the function returns a valid handle (a positive value). The table entries describing
xa_complete () assume that the caller passes this same, valid handle to xa_complete ().

Asynchronous Operation States
XA Routines Initial Call Operation Pending

A0 A1

Any synchronous xa_∗ call A0
xa_rollback (TMASYNC) A1
xa_close (TMASYNC) A1
xa_commit(TMASYNC) A1
xa_end(TMASYNC) A1
xa_forget (TMASYNC) A1
xa_open(TMASYNC) A1
xa_prepare(TMASYNC) A1
xa_start (TMASYNC) A1
xa_complete () A0
xa_complete (TMNOWAIT) A0
xa_complete (TMNOWAIT) → [XA_RETRY] A1

Table 6-5 State Table for Asynchronous Operations

Distributed Transaction Processing: The XA Specification 63

State Tables

64 X/Open CAE Specification (1991)

Chapter 7

Implementation Requirements

This chapter summarises the implications on implementors of this specification. It also
identifies features of this specification that implementors of RMs or TMs can regard as
optional.

These requirements are designed to facilitate portability — specifically, the ability to
move a software component to a different DTP system without modifying the source
code. It is anticipated that DTP products will be delivered as object modules and that
the administrator will control the mix and operation of components at a particular site
by:

1. re-linking object modules

2. supplying text strings to the software components (or executing a vendor-
supplied procedure that generates suitable text strings).

7.1 Application Program Requirements
Any AP in a DTP system must use a TM and delegate to it responsibility to control and
coordinate each global transaction. X/Open will specify a TX interface separately.

The AP is not involved in either the commitment protocol or the recovery process. An
AP thread can have only one global transaction active at a time.

The AP may ask for work to be done by calling one or more RMs. It uses the RM’s
native interface exactly as it would if no TM existed, except that it calls the TM to
define global transactions (see Section 7.2.1 on page 68).

Distributed Transaction Processing: The XA Specification 65

Resource Manager Requirements Implementation Requirements

7.2 Resource Manager Requirements
The X/Open DTP model affects only RMs operating in the DTP environment. The
model puts these constraints on the architecture or implementation of the RM:

• Interfaces
RMs must provide all the xa_ routines specified in Chapter 3 for use by TMs, even if
a particular routine requires no real action by that RM. RMs must also provide a
native application program interface (see Section 7.2.1 on page 68). As this is the
initial version of the XA interface, RMs must also set to 0 the version element of
their switches.

An RM in an executable module is linked to at most one TM.

• Ability to recognise XIDs
RMs must accept XIDs from TMs. They must associate with the XID all the work
they do for an AP. For example, if an RM identifies a thread of control using a
process identifier, the RM must map the process identifier to the XID.

An important attribute of the XID is global uniqueness, based on the exact order of
the bits in the data portion of the XID for the lengths specified. Therefore, RMs
must not alter in any way the bits in the data portion of the XID. For example, if an
RM remotely communicates an XID, it must ensure that the data bits of the XID are
not altered by the communication process. That is, the data part of the XID should
be treated as an OCTET STRING (opaque data) using terminology defined in the
referenced ASN.1 standard and the referenced BER standard.

• Calling protocol
A single instance of an RM must allow multiple threads logically to gain access to it
on behalf of the same transaction branch, although it has the option of actually
implementing single-threaded access (for example, blocking a thread at the call to
xa_start() or channelling all accesses through a single back-end process). An RM
can use whatever it wishes from the AP’s environment (for example, process ID,
task ID, or user ID) to identify the calling thread.

An RM must ensure that each calling thread makes xa_ calls in a legal sequence,
and must return [XAER_PROTO] or other suitable error if the caller violates the
state tables (see Chapter 6).

• Commitment protocol
The RM must support the commitment protocol specified in Section 2.3 on page 8.
This has the following implications:

— An RM must provide an xa_prepare () routine, and must be able to report
whether it can guarantee its ability to commit the transaction branch. If it
reports that it can, it must reserve all the resources needed to commit the
branch. It must hold those resources until the TM directs it either to commit or
roll back the branch.

— An RM must support the one-phase commit optimisation (see Section 2.3.2 on
page 8). That is, it must allow xa_commit() (specifying TMONEPHASE) even if
it has not yet received xa_prepare () for the transaction branch in question.

66 X/Open CAE Specification (1991)

Implementation Requirements Resource Manager Requirements

• Support for Recovery
An RM must track the status of all transaction branches in which it is involved.
After responding affirmatively to the TM’s xa_prepare () call, the RM cannot erase its
knowledge of the branch, or of the work it has done in support of that branch, until
it receives and successfully performs the TM’s order to commit or roll back the
branch. If an RM heuristically completes a branch, it cannot forget the branch until
explicitly permitted to by the TM. On command, an RM must return a list of all its
branches that it has prepared to commit or has heuristically completed.

When an RM recovers from its own failure, it recovers prepared and heuristically
completed transaction branches. It forgets all other branches.

• Public information
An RM product must publish the following information:

— The name of its xa_switch_t structure. This switch gives RM entry points and
other information; Section 4.3 on page 21 specifies its structure. Multiple RMs
may share the same xa_switch_t structure. Each pointer must point to an actual
routine, even pointers that are theoretically unused on that RM. These routines
must return in an orderly way, in case they are mistakenly called. (The RM does
not need to publish the names of the individual routines.)

— The text of the string, within the RM switch, that specifies the name of the RM.

— The forms of the information strings that its xa_open() and xa_close () routines
accept, and the way that different xa_open() strings specify different resource
domains for different RM instances.

— The names of libraries or object files, in the correct sequence, that the
administrator must use when linking APs with the RM.

— Any semantics in the native interface that affect global transaction processing —
for example, specifying isolation level, transaction completion, or effects that
differ from non-DTP operation.

X/Open will specify how an RM provider can guarantee that its names do not
conflict with the name of any other RM product or version produced by that or
another organisation.

• Implementor options
Each RM has the option of implementing these features:

— Open/close informational strings
Any RM may accept a null string in place of the informational string argument
on calls to its xa_open() and xa_close () routines. (If it does so, it must publish this
fact.)

— Protocol optimisations
The read-only optimisation discussed in Section 2.3.2 on page 8 is optional.

— Association migration
An RM can allow a TM to resume a suspended association in a thread of control
other than the one where the suspension occurred.

Distributed Transaction Processing: The XA Specification 67

Resource Manager Requirements Implementation Requirements

— Branch identification
An RM can use the bqual component of the XID structure to let different
branches of the same global transaction prepare to commit at different times,
and to avoid deadlock (see Section 4.2 on page 19).

— Dynamic registration
This feature, as described in Section 3.3.1 on page 15, is optional.

— Asynchrony
Support for the asynchronous mode discussed in Section 3.5 on page 18 is
optional. If the TMUSEASYNC flag is set in the RM’s switch, the RM must
support the asynchronous mode. It may still complete some requests
synchronously, either when the TM makes the original asynchronous call or
when the TM calls xa_complete (). If the TMUSEASYNC flag is not set in the
RM’s switch and the TM makes an asynchronous call, the RM must return
[XAER_ASYNC].

— Heuristics
As described in the xa_commit() and xa_rollback () reference manual pages, an
RM can report that it has heuristically completed the transaction branch. This
feature is optional.

7.2.1 The Application Program (Native) Interface

RMs must provide a well-defined native interface that APs can use to request work. To
maximise portability, all AP-RM interfaces should adhere to any applicable X/Open
publication. For example, a relational DBMS RM should use the SQL defined in the
referenced SQL specification.

In the DTP environment, RMs must rely on the TM to manage global transactions.
Some RMs, such as some Indexed Sequential Access Method (ISAM) file managers,
have no concept of transactions. So this is a new requirement, but it does not change
the native interface. In other RMs, such as SQL RDBMSs, the native interface defines
transactions. An AP must not use these services in a DTP context, since TMs have no
knowledge of an RM’s transaction. For example, the application program interface for
an SQL RM in the DTP environment must not let use of these statements affect the
global transaction:

EXEC SQL COMMIT WORK
EXEC SQL ROLLBACK WORK

In addition, any service in the native AP-RM interface that affects its own commitment,
or any non-standard service that has an effect on transactions, must not be used within
a global transaction.

68 X/Open CAE Specification (1991)

Implementation Requirements Transaction Manager Requirements

7.3 Transaction Manager Requirements
• Service interfaces

TMs must use the xa_ routines the RM provides (see Chapter 3) to coordinate the
work of all the local RMs that the AP uses. TMs must call xa_open() and xa_close ()
on any local RM associated with the TM. Each TM must ensure that each of its xa_
calls addresses the correct RM.

TMs must be written to handle consistently any information or status that an RM
can legally return. A TM must assume that it may be linked with RMs that use any
RM options that this specification allows, including multiple RMs in a single AP
object program, dynamic registration of RMs, RMs that make heuristic decisions,
and RMs that use the read-only protocol optimisation.

• Transaction identifiers
A TM must generate XIDs conforming to the structure described in Section 4.2 on
page 19. They must be globally unique and must adequately describe the
transaction branch. To guarantee global uniqueness, the TM should use an ISO
OBJECT IDENTIFIER (see the referenced ASN.1 standard and the referenced BER
standard) that the TM knows is unique within the gtrid component of the XID. The
TM should also use an ISO OBJECT IDENTIFIER within the bqual field, but the
same OBJECT IDENTIFIER can be used for all XIDs that a given TM generates. The
bqual fields identify the TM that generated them, and identify the transaction branch
with which they are associated.

Failure to use the ISO OBJECT IDENTIFIER format for XIDs could cause
interoperability problems when multiple TMs are either involved in the same global
transaction or affect shared resources.

• Public information
A TM product must publish the following information:

— linking directions for producing an application object program — these
directions must describe how to link RM and TM libraries, and how to
incorporate the switch from each RM

— instructions for generating or locating appropriate informational strings that the
TM uses when it calls xa_open() or xa_close () for each RM

• Implementor options
The one-phase commit protocol optimisation (see Section 2.3.2 on page 8) and the
asynchronous and non-blocking modes for calling RMs (see Section 3.5 on page 18)
are optional.

Distributed Transaction Processing: The XA Specification 69

Implementation Requirements

70 X/Open CAE Specification (1991)

Appendix A

Complete Text of "xa.h"

This appendix specifies the complete text of an "xa.h" file in both ANSI C (see the
referenced C standard) and Common Usage C.

/ ∗
∗ Start of xa.h header
∗
∗ Define a symbol to prevent multiple inclusions of this header file
∗/

#ifndef XA_H
#define XA_H
/ ∗

∗ Transaction branch identification: XID and NULLXID:
∗/

#define XIDDATASIZE 128 / ∗ size in bytes ∗/
#define MAXGTRIDSIZE 64 / ∗ maximum size in bytes of gtrid ∗/
#define MAXBQUALSIZE 64 / ∗ maximum size in bytes of bqual ∗/
struct xid_t {

long formatID; / ∗ format identifier ∗/
long gtrid_length; / ∗ value from 1 through 64 ∗/
long bqual_length; / ∗ value from 1 through 64 ∗/
char data[XIDDATASIZE];
};

typedef struct xid_t XID;
/ ∗

∗ A value of -1 in formatID means that the XID is null.
∗/

/ ∗
∗ Declarations of routines by which RMs call TMs:
∗/

#ifdef __STDC__
extern int ax_reg(int, XID ∗, long);
extern int ax_unreg(int, long);
#else / ∗ ifndef __STDC__ ∗/
extern int ax_reg();
extern int ax_unreg();
#endif / ∗ ifndef __STDC__ ∗/
/ ∗

∗ XA Switch Data Structure
∗/

#define RMNAMESZ 32 / ∗ length of resource manager name, ∗/
/ ∗ including the null terminator ∗/

define MAXINFOSIZE 256 / ∗ maximum size in bytes of xa_info
/ ∗ strings, including the null terminator ∗/

struct xa_switch_t {
char name[RMNAMESZ]; / ∗ name of resource manager ∗/
long flags; / ∗ options specific to the resource manager ∗/
long version; / ∗ must be 0 ∗/

#ifdef __STDC__
int (∗xa_open_entry)(char ∗, int, long); / ∗ xa_open function pointer ∗/
int (∗xa_close_entry)(char ∗, int, long); / ∗ xa_close function pointer ∗/
int (∗xa_start_entry)(XID ∗, int, long); / ∗ xa_start function pointer ∗/
int (∗xa_end_entry)(XID ∗, int, long); / ∗ xa_end function pointer ∗/

Distributed Transaction Processing: The XA Specification 71

Complete Text of "xa.h"

int (∗xa_rollback_entry)(XID ∗, int, long);
/ ∗ xa_rollback function pointer ∗/

int (∗xa_prepare_entry)(XID ∗, int, long);/ ∗ xa_prepare function pointer ∗/
int (∗xa_commit_entry)(XID ∗, int, long); / ∗ xa_commit function pointer ∗/
int (∗xa_recover_entry)(XID ∗, long, int, long);

/ ∗ xa_recover function pointer ∗/
int (∗xa_forget_entry)(XID ∗, int, long); / ∗ xa_forget function pointer ∗/
int (∗xa_complete_entry)(int ∗, int ∗, int, long);

/ ∗ xa_complete function pointer ∗/
#else / ∗ ifndef __STDC__ ∗/

int (∗xa_open_entry)(); / ∗ xa_open function pointer ∗/
int (∗xa_close_entry)(); / ∗ xa_close function pointer ∗/
int (∗xa_start_entry)(); / ∗ xa_start function pointer ∗/
int (∗xa_end_entry)(); / ∗ xa_end function pointer ∗/
int (∗xa_rollback_entry)(); / ∗ xa_rollback function pointer ∗/
int (∗xa_prepare_entry)(); / ∗ xa_prepare function pointer ∗/
int (∗xa_commit_entry)(); / ∗ xa_commit function pointer ∗/
int (∗xa_recover_entry)(); / ∗ xa_recover function pointer ∗/
int (∗xa_forget_entry)(); / ∗ xa_forget function pointer ∗/
int (∗xa_complete_entry)(); / ∗ xa_complete function pointer ∗/

#endif / ∗ ifndef __STDC__ ∗/
};

/ ∗
∗ Flag definitions for the RM switch
∗/

#define TMNOFLAGS 0x00000000L / ∗ no resource manager features
selected ∗/

#define TMREGISTER 0x00000001L / ∗ resource manager dynamically
registers ∗/

#define TMNOMIGRATE 0x00000002L / ∗ resource manager does not support
association migration ∗/

#define TMUSEASYNC 0x00000004L / ∗ resource manager supports
asynchronous operations ∗/

/ ∗
∗ Flag definitions for xa_ and ax_ routines
∗/

/ ∗ use TMNOFLAGS, defined above, when not specifying other flags ∗/
#define TMASYNC 0x80000000L / ∗ perform routine asynchronously ∗/
#define TMONEPHASE 0x40000000L / ∗ caller is using one-phase commit

optimisation ∗/
#define TMFAIL 0x20000000L / ∗ dissociates caller and marks

transaction branch rollback-only ∗/
#define TMNOWAIT 0x10000000L / ∗ return if blocking condition exists ∗/
#define TMRESUME 0x08000000L / ∗ caller is resuming association

with suspended transaction branch ∗/
#define TMSUCCESS 0x04000000L / ∗ dissociate caller from transaction

branch ∗/
#define TMSUSPEND 0x02000000L / ∗ caller is suspending, not ending,

association ∗/
#define TMSTARTRSCAN 0x01000000L / ∗ start a recovery scan ∗/
#define TMENDRSCAN 0x00800000L / ∗ end a recovery scan ∗/
#define TMMULTIPLE 0x00400000L / ∗ wait for any asynchronous operation ∗/
#define TMJOIN 0x00200000L / ∗ caller is joining existing transaction

branch ∗/
#define TMMIGRATE 0x00100000L / ∗ caller intends to perform migration ∗/

72 X/Open CAE Specification (1991)

Complete Text of "xa.h"

/ ∗
∗ ax_() return codes (transaction manager reports to resource manager)
∗/

#define TM_JOIN 2 / ∗ caller is joining existing transaction
branch ∗/

#define TM_RESUME 1 / ∗ caller is resuming association with
suspended transaction branch ∗/

#define TM_OK 0 / ∗ normal execution ∗/
#define TMER_TMERR -1 / ∗ an error occurred in the transaction

manager ∗/
#define TMER_INVAL -2 / ∗ invalid arguments were given ∗/
#define TMER_PROTO -3 / ∗ routine invoked in an improper context ∗/
/ ∗

∗ xa_() return codes (resource manager reports to transaction manager)
∗/

#define XA_RBBASE 100 / ∗ the inclusive lower bound of the
rollback codes ∗/

#define XA_RBROLLBACK XA_RBBASE /∗ the rollback was caused by an
unspecified reason ∗/

#define XA_RBCOMMFAIL XA_RBBASE+1 /∗ the rollback was caused by a
communication failure ∗/

#define XA_RBDEADLOCK XA_RBBASE+2 /∗ a deadlock was detected ∗/
#define XA_RBINTEGRITY XA_RBBASE+3 / ∗ a condition that violates the

integrity of the resources
was detected ∗/

#define XA_RBOTHER XA_RBBASE+4 /∗ the resource manager rolled back
the transaction branch for
a reason not on this list ∗/

#define XA_RBPROTO XA_RBBASE+5 /∗ a protocol error occurred in the
resource manager ∗/

#define XA_RBTIMEOUT XA_RBBASE+6 / ∗ a transaction branch took too
long ∗/

#define XA_RBTRANSIENT XA_RBBASE+7 / ∗ may retry the transaction branch ∗/
#define XA_RBEND XA_RBTRANSIENT /∗ the inclusive upper bound of the

rollback codes ∗/

#define XA_NOMIGRATE 9 / ∗ resumption must occur where
suspension occurred ∗/

#define XA_HEURHAZ 8 / ∗ the transaction branch may have
been heuristically completed ∗/

#define XA_HEURCOM 7 / ∗ the transaction branch has been
heuristically committed ∗/

#define XA_HEURRB 6 / ∗ the transaction branch has been
heuristically rolled back ∗/

#define XA_HEURMIX 5 / ∗ the transaction branch has been
heuristically committed and rolled back ∗/

#define XA_RETRY 4 / ∗ routine returned with no effect and
may be reissued ∗/

#define XA_RDONLY 3 / ∗ the transaction branch was read-only and
has been committed ∗/

#define XA_OK 0 / ∗ normal execution ∗/

Distributed Transaction Processing: The XA Specification 73

Complete Text of "xa.h"

#define XAER_ASYNC -2 / ∗ asynchronous operation already outstanding ∗/
#define XAER_RMERR -3 / ∗ a resource manager error occurred in the

transaction branch ∗/
#define XAER_NOTA -4 / ∗ the XID is not valid ∗/
#define XAER_INVAL -5 / ∗ invalid arguments were given ∗/
#define XAER_PROTO -6 / ∗ routine invoked in an improper context ∗/
#define XAER_RMFAIL -7 / ∗ resource manager unavailable ∗/
#define XAER_DUPID -8 / ∗ the XID already exists ∗/
#define XAER_OUTSIDE -9 / ∗ resource manager doing work outside ∗/

/ ∗ global transaction ∗/
#endif / ∗ ifndef XA_H ∗/
/ ∗

∗ End of xa.h header
∗/

74 X/Open CAE Specification (1991)

- 1 -

Distributed Transaction Processing: The XA Specification 1

Index

ability to commit...8
absence of expected reply.................................9
access to resources ...4
account verification..4
address space ..6
addressing correct RM69
administrative procedures21, 65
ANSI C..19
AP ..1

dissociating from RM13
instance of ..4
requirements ...65

AP initiation of interface activity11
API

comparison with...1
application program1, 4
association

of threads, state table...................................59
of transactions...66
suspending ..15

asynchronous
calling mode ..18
operations, state table..................................63

asynchrony
RM option ..68
TM option ..69
use of RM flag word21

atomic action identifier (OSI CCR)20
atomic commitment ...5
autonomy of RMs...5
awareness, lack of between RMs.....................5
ax_ prefix..19
ax_ routines ...12
ax_reg()..12, 16, 26
ax_unreg()...12, 16, 29
blocking control thread18
branch ID

component of XID..19
RM option ..68

byte exchange in communicating XID.........66
calling protocol

RM requirement ...66

calling sequence..57
changes

making permanent.......................................17
commit

decision to ..6
guaranteeing ability to...................................8
one-phase ...9
prepare to...8, 17

COMMIT WORK statement in SQL.............68
commitment protocol ..8

alternate..9
disruptions from error9
optimisations of ..8
phases of...8
RM requirement ...66
state table ...61

commitment, atomic ..5
committing transactions4, 17
Common Usage C ..19
communication ...1
completion

heuristic..9
testing for ...18

completion of transactions4, 17
components, software1
computational task...4
concluding involvement8
concurrent access to RMs66
configuration file ..13

editing...13
consistent effect of decisions4
consistent state ..4
context...6
control returned to caller18
control, thread of ..6
coordination of transactions.............................6
copying XID...20
database management system.........................5
DBMS ..5

atomic commitment.......................................5
decision

to commit ...6

Distributed Transaction Processing: The XA Specification 75

Index

to commit or roll back4
uniform effect ..4

declarations, changing.....................................21
definitions ..4
delivered products ...65
discarding knowledge of transaction.............8
dissociation

from RM ...13
from transaction ...14
of threads ...17
of threads, state table...................................59

distributed transaction4
distributed transaction processing4
DTP

coexistence of systems3
definition of ...4
example of system..3
implications of ..4
model ..1, 3
multiple systems within processor3

DTP system..3
dynamic registration..16

of RM ..15
RM option ..68
state table ...60
use of RM flag word21

ending involvement, dynamic RMs16
entry in state table ..58
entry points, pointers to21
error versus veto...14
EXEC SQL COMMIT WORK.........................68
EXEC SQL ROLLBACK WORK....................68
executable modules, linking...........................21
expected reply, absence of................................9
failure ..9

after prepare..17
correctable..9
locally-detected...9
of system component4
recovery..6, 18
to prepare to commit8

file access method
basis for RM...5

flag
absence of...22
definitions ..22
naming..19

word..21
word for RM..21

forgetting transaction17
formatID...20
global uniqueness of XID................................20
guaranteeing ability to commit........................8
guaranteeing global serialisability8
header file...19
heuristic completion ..68

in state table...62
RM requirement ...67

heuristic decision..9, 17
heuristic decisions

affected transactions18
matching...9
notification of ..9

identification, of calling thread......................66
immediate return mode18
implementation requirements65
implementor

options for RMs ..67
requirements for TMs..................................69

implications of DTP ...4
incomplete state of transaction......................15
index to services ...12
information

on transactions..12
RM requirement to publish........................67
string ...67

informational string ...67
locating ...69

initialisation
of RMs...13
string...13, 67
string, locating...69

initiation
of completion ..17
of interface activity.......................................11

initiator name (OSI CCR)................................20
instance

of AP..4
of DTP system...3

interchangeability, ensuring...........................23
interface

activity, initiation..11
native ..68
overview ..11

76 X/Open CAE Specification (1991)

Index

related ...1
RM-TM ...1
system-level...1

involvement
concluding ...8
in transaction...8
of RM ..15

ISAM
basis for RM...5
concept of transactions................................68

ISO object identifier..69
joining transaction..14
knowledge of transaction

discarding ..8
lack of update ..8
limits of specification...1
linking...21, 65

assumptions by TM69
information..67, 69

local failures...9
local recovery done by TM9
locks on shared resources6
logging

see stable recording..8
machine failure at RM18
manager

see RM or TM..1
mapping of XID ..20

RM requirement ...66
matching heuristic decisions............................9
method of referencing transaction..................4
migration, declaring RM support21
modes of xa_calls ...18
modifying shared resource...............................4
multiple

access to RMs ..66
associations..14
DTP systems within processor3
state transitions...57
threads using RM ...14

name of RM ...21, 67
name registration..67
naming conventions...19
native

interface..65, 68
statements ..68

negative response to pre-commit....................8

non-ANSI C
see Common Usage C19

non-blocking mode ..18
TM option ..69

non-standard native open...............................13
notation, in state tables....................................58
notification of heuristic decisions9
null string permitted..67
null XID ..20
object modules ..65
octet string ...66
one-phase commit ..9

failure implications ..9
TM option ..69

open, non-standard native..............................13
operations known within RM..........................5
optimisation...17

of commitment protocol8
read-only..67
RM option ..67

optional features ...65
orderly routine ..67
OSI CCR

compatibility with..9
use in XID...20

OSI DTP..8
heuristic completion9
protocol ..1

overview of interface11
permanence of changes...................................17
phases of commitment protocol......................8
pointer to XID..20
pointers to RM entry points21
portability...65

enhancing...13
maximising ..68

pre-commit
negative response to8

pre-committed transactions9
prepare to commit..8, 17
prepared transactions

list of..18
preserving XID..20
presumed rollback..8-9
print server, implemented as RM5
process ..6

Distributed Transaction Processing: The XA Specification 77

Index

protocol
commitment ..8
error...57
optimisations...8
OSI DTP..1
RM requirement ...66
state table ...61

public information
RM requirement ...67
TM requirement..69

publication of XID, TM option.......................69
rarely-used RMs ...16
RDBMS ...68
read-only response...8
recompilation, avoiding............................19, 65
recovery..6, 9

from failure..18
list ..18
local by TM ..9
RM requirement ...67

registration
of product name ...67
of RM ..16

registration of RM ..15
registration, dynamic.......................................16
rejoining transaction ..14
related work...1
releasing resources ...17
reporting

failure to prepare to commit8
transaction information...............................12

requirements for implementors65
resource manager...1, 5
resources

AP access to ...4
releasing ...17
system...6

result codes ..23
return codes ...23
RM ...1

access to stable storage..................................9
changing sets of ..21
concurrent use of..14
dynamic control of participation12
entry points..21
failure, state transition.................................58
initialisation state table58

machine failure ...18
name..67
name of...21
opening and closing.....................................13
option ..67-68
re-registerings ...16
registration of ..15-16
requirements ...66
return ..69
sequencing use of ...14
serialising use of ...14
start-up actions ...13
switch ...21, 69
unilateral action..18
updating shared resources9

RMs
work done across ...4

roles of software components..........................3
rollback only..15

RM option ..18
ROLLBACK WORK statement in SQL68
rolling back transactions.........................4, 8, 17
routine, unused...67
sequence

of calls ...57
of transaction...4
of xa_ routines...12

sequencing access...66
serialisability, guaranteeing8
serialising access...66
server, implemented as RM5
service interfaces

TM requirements..69
services, index...12
shared resources ...6

changes to ..17
modifying...4
no update to...8
permanence of changes to4
RM management of..5
unlocking..9

simultaneous updates, across RMs5
single asynchronous operation......................63
software components1, 3

roles of ..3
specification, limits of..1
stable recording...8

78 X/Open CAE Specification (1991)

Index

stable storage, access ...9
start-up actions in RM.....................................13
state table ...57

closing RM ...58
failure return ...58
general entry..58
initial state in ...57
opening RM ...58
RM requirement to enforce66
specific entry ...58

status of work done..4
superior name (OSI CCR)...............................20
support for recovery..67
suspending association with transaction15
switch name...67
switch, RM ...21
synchronous calling mode..............................18
syntax, in state tables58
system component, failure of...........................4
system-level interface ..1
system-specific procedure13, 65
table, state ..57
template names of xa_ routines.....................12
terminated thread...18
termination string.......................................13, 67

locating ...69
testing for completion......................................18
text strings

configuration control with..........................65
RM requirement to publish........................67

thread
association with transactions.....................14
supervising completion17

thread of control ...6
association ...59
manner of identifying..................................66
same across calls...6
state transition...57
termination ..18

TM ...1, 6
access to stable storage..................................9
delegating responsibility to........................65
heterogeneous...1
linking assumptions69
options ..69
performing local recovery9
prefix...19

requirements ...69
TMER_ prefix ..19
TMNOFLAGS ...22
TM_ prefix ...19
tracking transactions..67
transaction..3

associating threads.......................................14
association state table..................................59
authorisation to forget...................................9
branch identifier ...6
commitment and recovery8
commitment protocol....................................8
committing ..4, 17
completion ...17
context ..6, 15
controlling RM participation12
definition of ...4
dissociating from..14
dissociating threads.....................................14
ending association..14
ending involvement in8
forgetting..17
global, definition of ..5
incomplete state..15
independent completion...............................9
information reporting..................................12
joining...14
location-independence of work...................4
manager..6
method of referencing4
pre-committed ..9
resuming association...................................14
RM-internal..5
RMs must recognise66
rollback-only..15
rolling back ..4, 8
start of association..14
state table ...61
suspending association15
work outside ...16

transaction ID
component of XID..19

transaction manager (TM)1
transition ..57
two-phase commit..8
undoing changes...17
undoing work..4

Distributed Transaction Processing: The XA Specification 79

Index

unilateral RM action ..18
unimplemented routines67
uniqueness of XID......................................20, 69
unit of work ...4
unused routines ..67
update, lack of...8
vendor

options for RMs ..67
requirements for TMs..................................69

vendor requirements65
vendor-specific procedure65
version word ...21
veto ..8

reporting by xa_start14
work done

across RMs...4
status of ..4

work outside transaction16
X/Open-compliant interface............................4
XA interface ...1
xa.h header...19
XAER_ prefix...19
XAER_PROTO ..57
XA_ prefix..19
xa_ routines ...12

names of ...12
order of use..12
sequence of ..12

xa_close()...12, 30
redundant use ...58
state table ...58

xa_commit() ...12, 17, 32
xa_complete().......................................12, 18, 35
xa_end() ...12, 14-15, 37

RMs applied to..15
xa_forget()...12, 40
xa_open()...12, 42

redundant use ...58
RM parameters passed in...........................13
state table ...58

xa_prepare() ...12, 17, 44
required..66
RMs applied to..15

xa_recover()..12, 18, 47
xa_rollback()...12, 17, 49
xa_start()..12, 14-15, 52

not used in dynamic registration..............16

primary use ...14
RMs applied to..15
to resume ...14

xa_switch_t ..21
XID...6

local copy ...20
mapping to local transaction20
null...20
structure and byte alignment.....................20
structure definition......................................19
TMs required to manage69
uniqueness...66

80 X/Open CAE Specification (1991)

