GC/MS 및 LC/MS의 이해 및 응용

Matrix-Assisted Laser Desorption Ionization Timeof-Flight (MALDI-TOF)

Electrospray
Ionizationquadrupole-Timeof-Flight tandem
MS (ESI-q-TOF
tandem MS)

Liquid Chromatography-Mass Spectrometry (LC-MS)

Gas
ChromatographyMass
Spectrometry
(GC-MS)

이화여자대학교 권영주

1. Mass Spectroscopy의 기본 원리

●원자 및 분자를 기체상(high-vacuum region)에서 이온화시켜 하전입자(분자 또는 원자)에 대한 질량(mass/charge)을 측정하여 molecular weight을 결정하는 방법, 더 나아가 복잡한 구조를 가진 화합물의 구조를 규명할 수 있는 방법

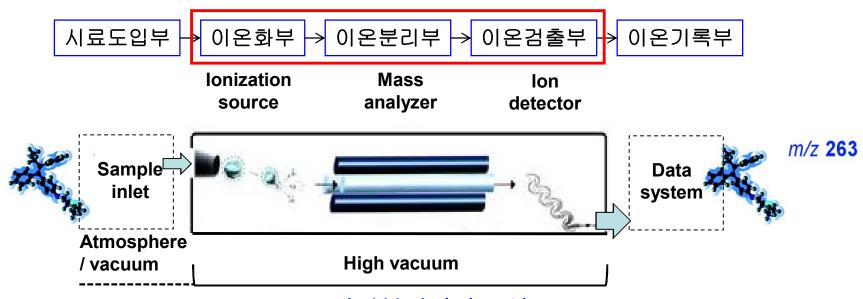
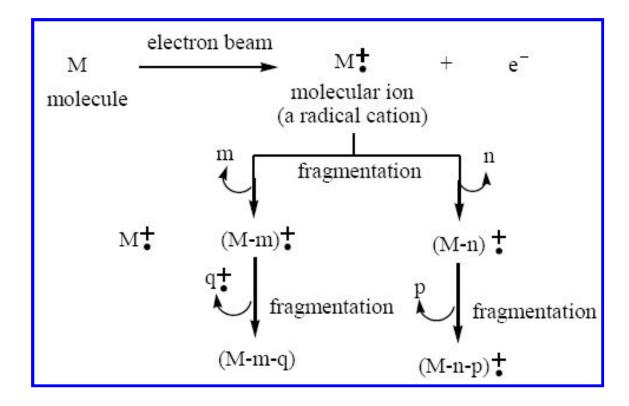
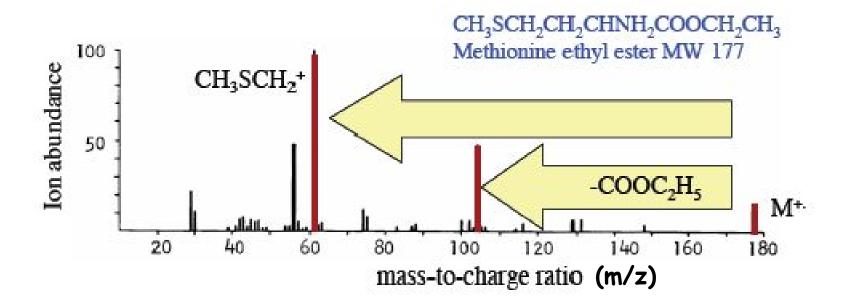



Figure 1 질량분석기의 구성도

- ➤ <u>Function1</u>. 물질을 high-energy electron으로 공격하여 이온화시키고 electric field 에서 가속화시킴: ionization chamber
- ➤ <u>Function2.</u> 가속화된 이온은 magnetic or electric field에서 그것의 molecular-to-charge ratio에 따라 분리.
- ➤ <u>Function3.</u> 특정 molecular-to-charge ratio를 가지는 이온을 detector에서 확인.


분자의 이온화 및 조각화 과정

Cations detected by collector: M (M-m) (M-m) (M-n) (M-n-p) q

- > Most of the instrument is designed to detect cations.
- most fragments have a charge of +1,
- \triangleright the M^+ usually represents the molecular weight of the fragment.
- > spectrum: relative abundance (signal intensity) vs m/z

화합물의 mass spectrum 예

2. Mass Spectroscopy의 특성 및 활용

- MS는 분리분석법인 기체 및 액체크로마토그래피와의 결합이 용이하여 혼합물의 분리,
 구조 확인 및 극미량 분석에 있어서 매우 유용한 수단이다.
- 유기물의 극미량분석에서 *GC-MS*는 다른 분석장비에 비하여 **감도(sensitivity)**가 월등히 우수하다.
- 1990년 대 이후부터 연이온화법인 고속원자폭격법(fast atom bombardment, FAB), 전 자분무이온화법 (electrospray ionization, ESI), 매트릭스보조 레이저 탈착 이온화법 (matrix-assisted laser desorption ionization, MALDI) 등이 개발되면서 복잡한 유기화합물의 구조분석이 급격하게 발전을 이루게 되어 최근에는 최첨단 분석법으로 발전하게되었다.
- 환경 분석: 독성이 강한 다이옥신과 같은 극미량 (picogram level, 10⁻¹²g) 및 고난이도 분석이 질량분석기로 가능
- 고분자 물질인 단백질, DNA으로부터 저분자 물질 대사체에 이르기 까지 다양한 생체물 질의 구조분석에 활용되고 있다.
- 아폴로우주선에서 달의 지표성분의 확인, 올림픽 경기에서 도핑테스트 (금지약물의 분석),
 불법 마약류의 검출, 약물 대사연구, 임상연구, 신약개발, 환경오염물질 검출 및 생체고분자
 물질의 구조 규명 등 다양한 과학분야에 질량 분석법이 적용

3. Ionization Method

❖ 일반적인 방법(standard method): EI, CI

❖ 연이온화법 (soft ionization):

탈리 화학이온화법 (Desorption Chemical Ionization, DCI),

이차이온화 (Secondary ion, SIMS)과 고속원자폭격(Fast atom bombardment, FAB),

매트릭스보조 레이저 탈착 이온화 (Matrix-assisted laser desorption ionization, MALDI),

장이온화법 (Field ionization, FI)과 장탈착법(Field desorption, FD),

Electrospray Ionization (ESI)

대기압 이온화 (Atmospheric pressure ionization, API)

A. Electron Ionization (EI) Electron beam Filament From sample system Repeller plate To pumps Focusing slit To pumps

- 저분자 유기화합물 이온화에 가장 널리 사용되고 주로 양이온을 생성
- 기체상태의 시료분자를 전류로 가열한 필라멘트로부터 방출되는 전자빔(70 eV)으로 충돌하여 이온화 시킴
- 과잉 이온화에너지(이온화전위)를 주는 이유는 구조정보에 도움을 주는 조각이온을 얻을 수 있고 전압이 약간 변해도 이온의 생성 확율이 별로 변하지 않는 장점이 있기 때문임.
- 전자빔을 에너지 → 전자 1 개가 방출 → 분자이온(molecular ion, M⁺⁻또는 M⁺) 생성 → 여분의 에너지를 가진 M⁺ 는 결합의 약한 부분이 끊어져 조각이온 (fragment ion) 생성
- EI-MS 스펙트럼에는 많은 피이크가 존재
- 조작이 간편하고 재현성이 좋기 때문에 일반적으로 널리 사용.
- 분자의 안정성이 낮은 경우 **M**⁺⁻가 나타나지 않기도 하고 또는 극히 약해서 확인할 수 없는 경우도 있음.
- 물질이 비교적 휘발성이어야 함.

고분자물질, 단백 질 할 수 없음

B. Chemical Ionization (CI)

The sample molecule M is then ionized through the ion–molecule reactions in Equations 8.5 and 8.6:

- EI보다 비교적 온화한 이온화 방법
- 시약기체 (reagent gas)라고 하는 특정 기체를 0.1~1 torr 정도의 압력으로 이온화실에 도입하고 이를 전자빔으로 에너지를 가하면 시약기체로부터 많은 이온들이 먼저 생성되고 이이온들이 시료분자와 충돌하여 이온-분자반응을 일으켜 시료분자를 (M+H)*로 이온화시킴.
- 물질이 비교적 휘발성이어야 함.

C. Desorption Ionization (SIMS, FAB, & MALDI가 속함)

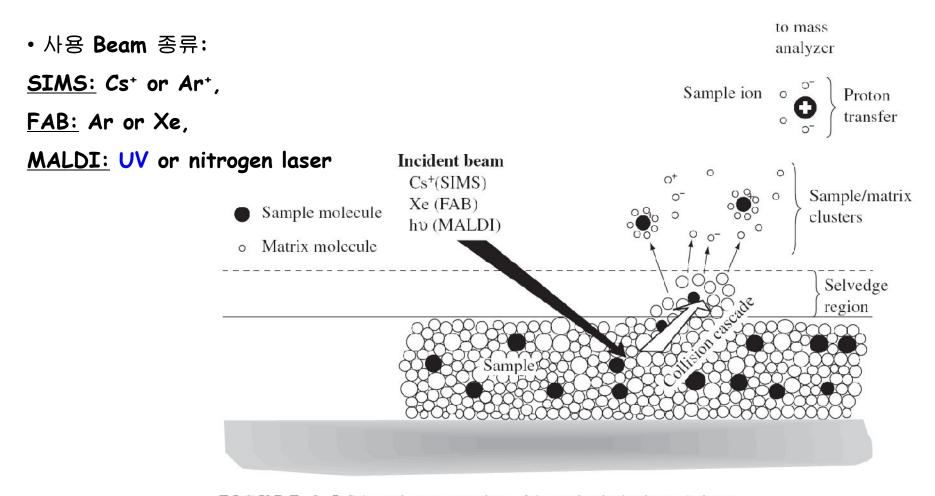
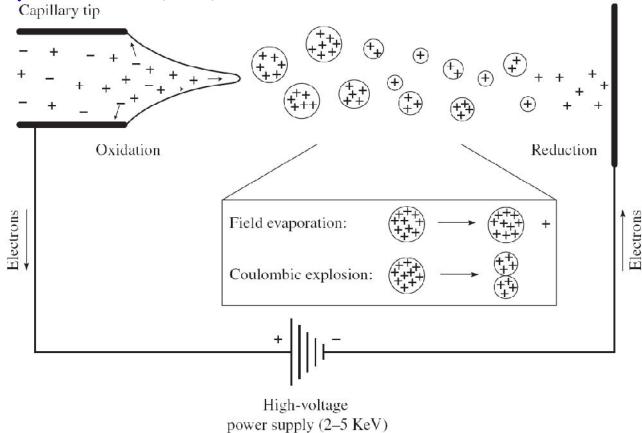



FIGURE 8.5 Schematic representations of desorption ionization techniques.

- 비휘발성 고분자 이온화법
- SIMS와 FAB에서 확인되는 분자 이온 형태: (M+H)+, (M-H)-, (M+Na)+, (M+K)+

D. Electrospray ionization (ESI)

FIGURE 8.8 Schematic representation of electrospray ionization (ESI) showing both field evaporation and coulombic explosion. (From Gross, J. H., *Mass Spectrometry: A Textbook*, Springer, Berlin, 2004. Reprinted by permission.)

- 비휘발성,고분자, 열에 불안정, 극성 화합물 이온화시키기에 **DI** 보다 더 유용하게 사용됨.
- 100-1500 사이의 저분자 화합물 이온화도 가능
- Thermospray ionizarion (TSI)과 유사
- 전기전도성 액체에 전장을 가하면 액체가 대전하여 미세한 液滴으로 분무되는 현상 이용.
- 거의 상압이므로 LC-MS에 적용하기 적합

4. Mass Analyzer

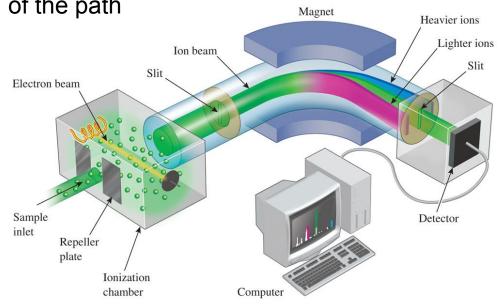
- mass analyzer의 종류
 - A. magnetic sector mass analyzer
 - B. Double-Focusing mass analyzer
 - C. Quadrupole mass analyzer
 - D. Time-of -Flight mass analyzer
- MS이름: ionization method와 mass analyzer에 따라 정해짐 ex) MALDI-TOF-MS, ESI-Quad-MS, ...

A. magnetic sector mass analyzer

- 가속화된 운동 에너지
 - m: ion 의 질량, v: 이온의 속도, e: 이온의 전하, V: 이온-가속판들 사이의 전위차

$$\frac{1}{2}mv^2 = eV$$

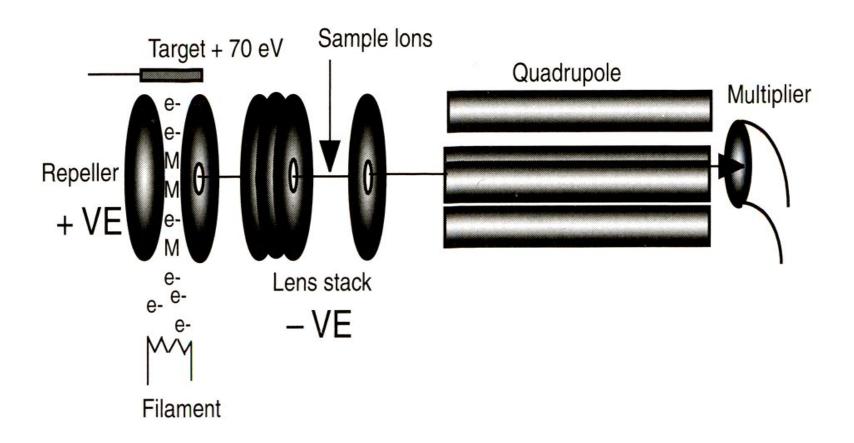
• Magnetic field에서 charged particle은 curved flight path로 설명 될 수 있다


$$r = \frac{mv}{eH}$$

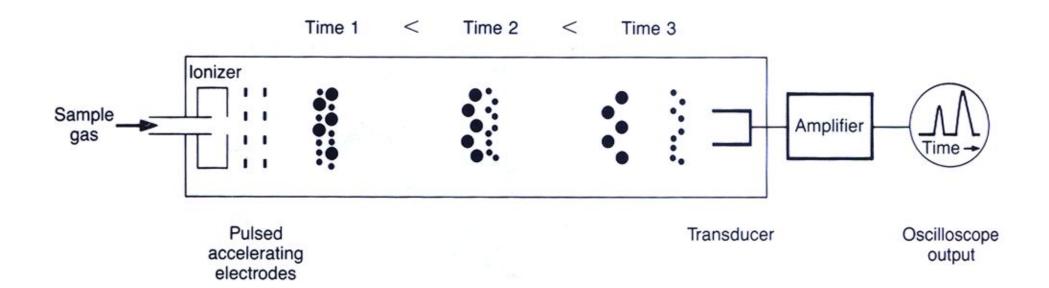
 $r = \frac{mv}{eH}$ • H: strength of magnetic field

• r: radius of curvature of the path

$$\frac{m}{e} = \frac{H^2 r^2}{2V}$$

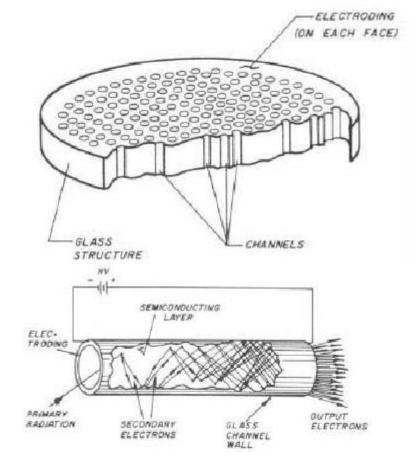

$$m/z$$

C. Quadrupole (mass filter)


compact, less expensive, low scan time (<100 ms) - by 5-15V

→ acceleration-pass stability of ions, mass limit 2,000

D. Time of flight (TOF)


 $v=(2Vz/m)^{1/2}$

5. Mass Spectrometry Ion detector 종류

질량분석기를 통과한 이온에 대해 전기적 신호로 받을 수 있는 부분을 검출기라 함

- 1) Photographic Plate
- 2) Faraday Cup detector
- 3) Electron Multiplier
- 4) Photomultiplier Detector
- 5) High Energy Dynode Detector
- 6) Array Detector
- 7) Microchannel Plate (MCP)

- ➤ GC-MS: GC가 Mass Spec에 연결된 것으로 Mass Spec이 detector의 역할.
- ▶ LC-MS: HPLC가 Mass Spec에 연결된 것으로 Mass Spec이 detector의 역할.

6. Determination of molecular weight

- ➤ ion mass값을 알아야 한다. (exact mass ≠ (molecular weight = 단순 chemical atomic weight의 합))
- ➤ Mass spec은 most common isotope을 함유하는 경우와 heavy isotope을 함유하는 경우 구별 가능 _______

molecular weight: 60

C₂H₈N₂ 60.06884 C₂H₄O₂ 60.02112

CH₄N₂O 60.03242

60.05754

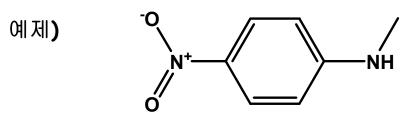
 C_3H_8O

- ➤ fragment ion과 M+와 구별.
- ➤ molecular ion peak (M+) 확인하는 요령
 - 1. isotopic peak제외하고 가장 highest mass가 M+
 - 2. isotopic peak는 주로 M+ peak 보다 lower intensity
 - 3. Nitrogen Rule:

N을 짝수 (no nitrogen 포함) 함유하는 물질의 Mass = 짝수 mass value N을 홀수 함유하는 물질의 Mass = 홀수 mass value

- 4. Br 또는 Cl 함유 물질일 경우: isotopic peak가 특징적
- 5. OH 함유 물질은 dehydration이 잘 일어남 → highest ion peak + 18 → 항상 그런 것

 Acetate는 acetic acid (60)를 쉽게 잃음 → highest ion peak + 60 → 은 아님



물질마다 특이한 fragmentation pattern을 참조해야 함

A. Precise Mass Determination

To determine intensities of M+1, M+2 peaks

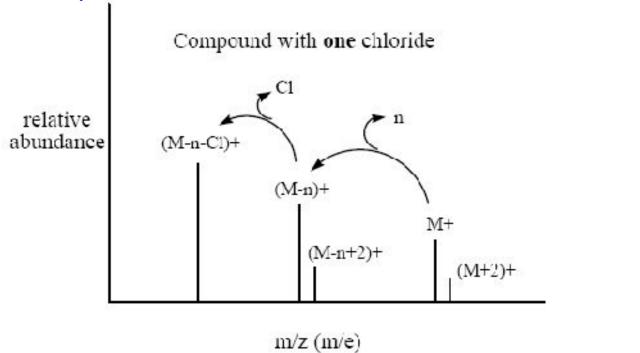
N-methyl-p-nitroaniline

C₇H₈N₂O₂ Exact Mass: 152.06 Mol. Wt.: 152.15

m/e: 152.06 (100.0%), 153.06 (8.7%) C, 55.26; H, 5.30; N, 18.41; O, 21.03

M+1 peak intensity = # C \times natural abundance(%) + # H \times natural abundance(%) + # N \times natural abundance(%) + # O \times natural abundance(%) = $7 \times 1.08 + 8 \times 0.016 + 2 \times 0.38 + 2 \times 0.04 = 8.5 % of M+ peak$

* Table: natural abundances of common elements and their isotopes


Element	Relative abundance					
Hydrogen	¹ H	100	2H	0.016		
Carbon	¹² C	100	¹³ C	1.08		
Nitrogen	¹⁴ N	100	¹⁵ N	0.38		
Oxygen	¹⁶ O	100	¹⁷ O	0.04	¹⁸ O	0.20
Fluorine	¹⁹ F	100				
Silicon	²⁸ Si	100	²⁹ Si	5.10	³⁰ Si	3.35
Phosphorus	³¹ P	100				
Sulfur	³² 5	100	³³ S	0.78	³⁴ S	4.40
Chlorine	³⁵ Cl	100			³⁷ Cl	32.5
Bromine	⁷⁹ Br	100			⁸¹ Br	98.0
Iodine	¹²⁷ I	100				

B. Relative abundance of CI on molecular ion

³⁵CI: 100% ³⁷Cl: 32.5% **(M)** (M+2)

For compound with one CI: $M/(M+2) \approx 3/1$

For compound with two CI: M: 100%, M+2: 65%, M+4: 10.6%

C. Relative abundance of Br on molecular ion

⁷⁹Br: 100% ⁸¹Br: 98.0%

 $(M) \qquad (M+2)$

For compound with one Br: $M/(M+2) \approx 1/1$

For compound with two Br: M: 100%, M+2: 195%, M+4: 95.4%

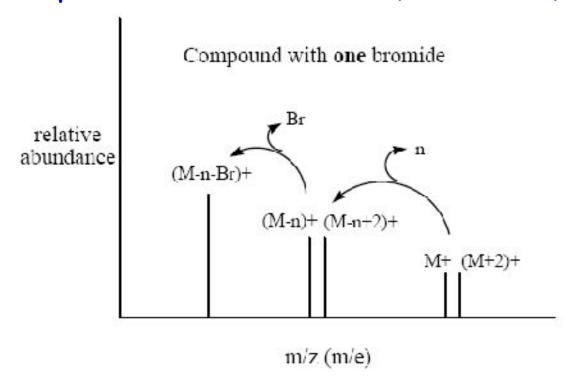
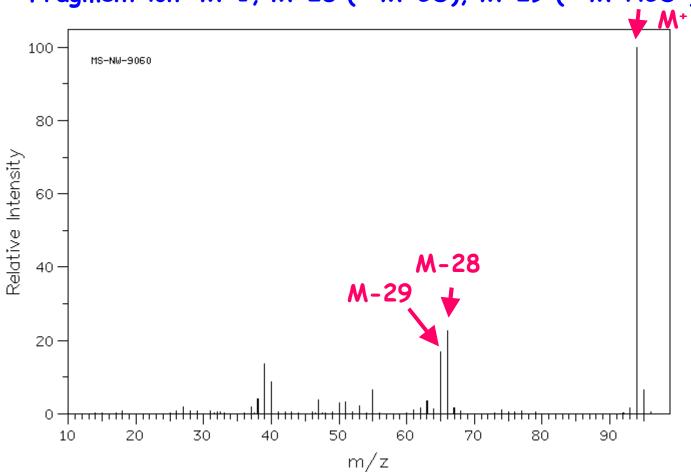


Table: relative intensities of isotope peaks for various combinations of bromine and chlorine

	Relative intensities					
Halogen	M	M+2	M+4	M+6		
Br	100	97.7				
Br ₂	100	195.0	95.4			
Br ₃	100	293.0	286.0	93.4		
Cl	100	32.6				
Cl ₂	100	65.3	10.6			
Cl ₃	100	97.8	31.9	3.47		
BrCl	100	130.0	31.9			
Br ₂ Cl	100	228.0	159.0	31.2		
Cl ₂ Br	100	163.0	74.4	10.4		

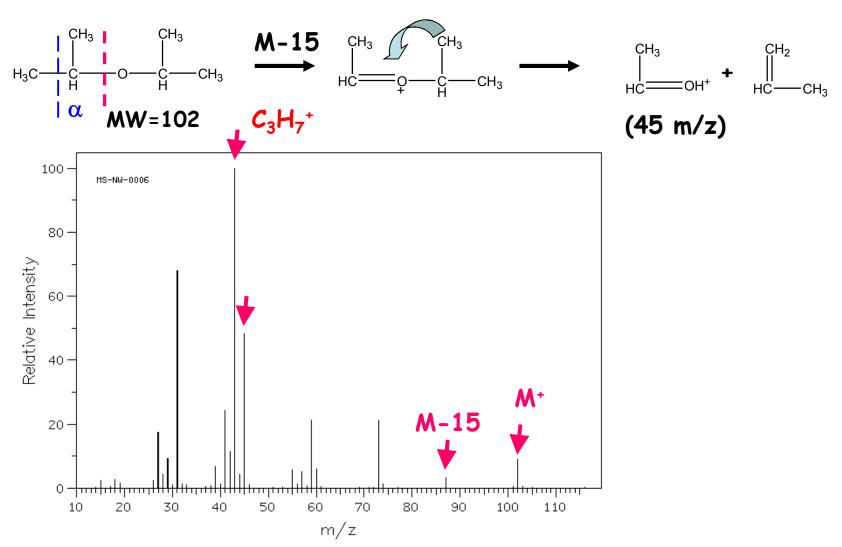

Fragmentation Patterns at Functional Groups* - to determine Molecular Formulas

Alcohols

* Phenol (MW=94) 일 경우:

Molecular ion peak (M+): strong

Fragment ion: M-1, M-28 (= M-CO), M-29 (= M-HCO•)

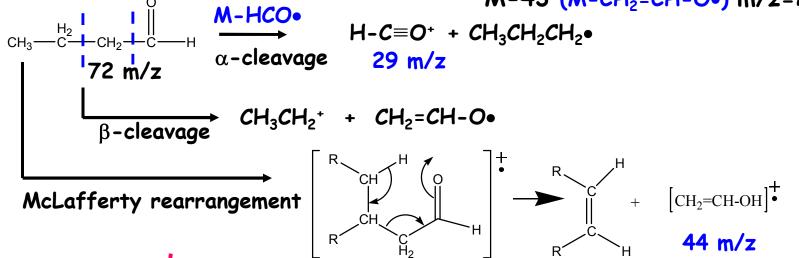


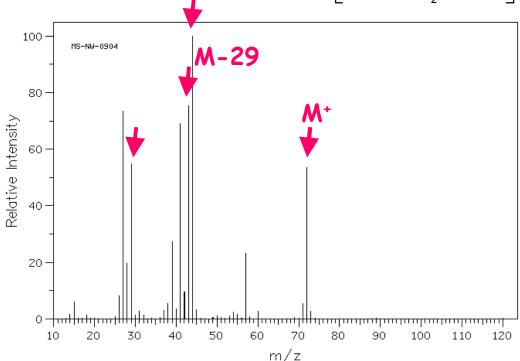
B. Ethers

Molecular ion peak (M+): weak

Fragment ion: α -cleavage, M-31, M-45, M-59, etc

m/z=43, 59, 73, so on.


©. Aldehydes for aliphatic


Molecular ion peak (M+): weak

Fragment ion: M-29 (= M-HCO•),

butyraldehyde

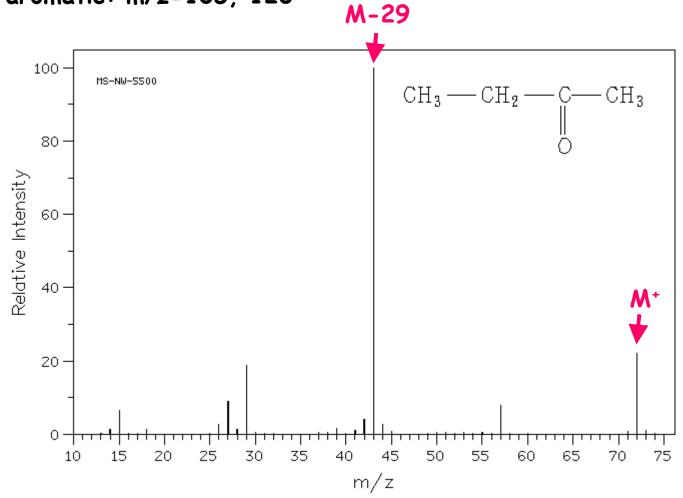
 $M-43 (M-CH_2=CH-O\bullet) m/z=29, 44$

©. Aldehydes for aromatic

Molecular ion peak (M+): strong

Fragment ion: for aliphatic: M-1, M-29 $(C_6H_6^+)$ 100-Relative Abundance M.W. = 10620-20 90 30 55 70 95 60 65 100 m/e

FIGURE 8.29 Mass spectrum of benzaldehyde.

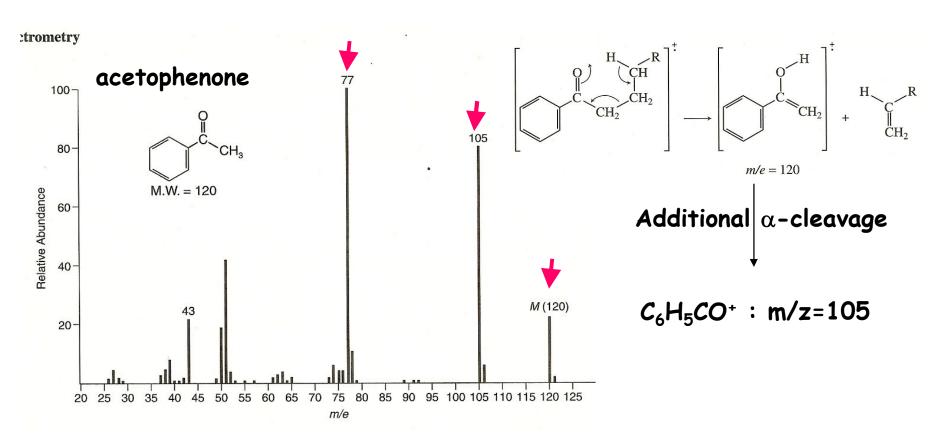

D. Ketones

Molecular ion peak (M+): strong

Fragment ion:

for aliphatic: M-15, M-29 (=M-ethyl), M-43, m/z=43, 58, 72, 86, etc

for aromatic: m/z=105, 120

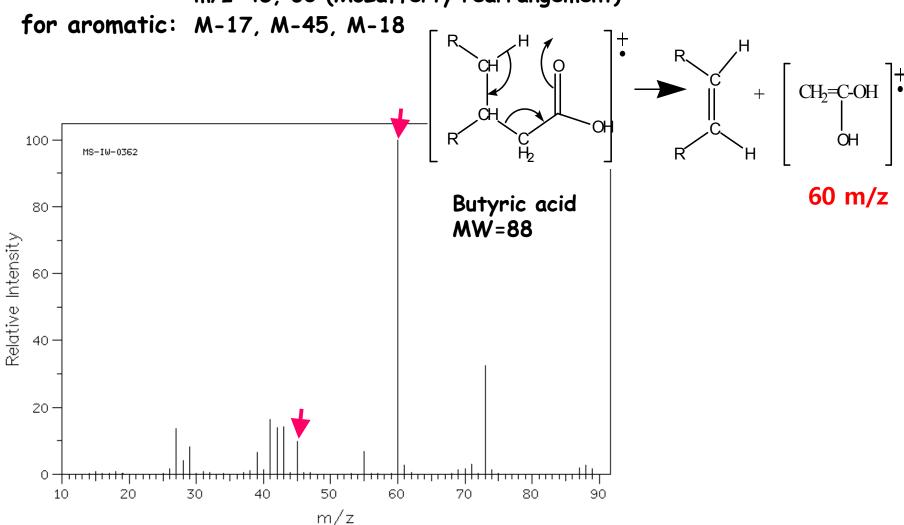

D. Ketones

Molecular ion peak (M+): strong

Fragment ion:

for aliphatic: M-15, M-29 (= M-HCO•), M-43, m/z=43, 58, 72, 86, etc

for aromatic: m/z=105, 120

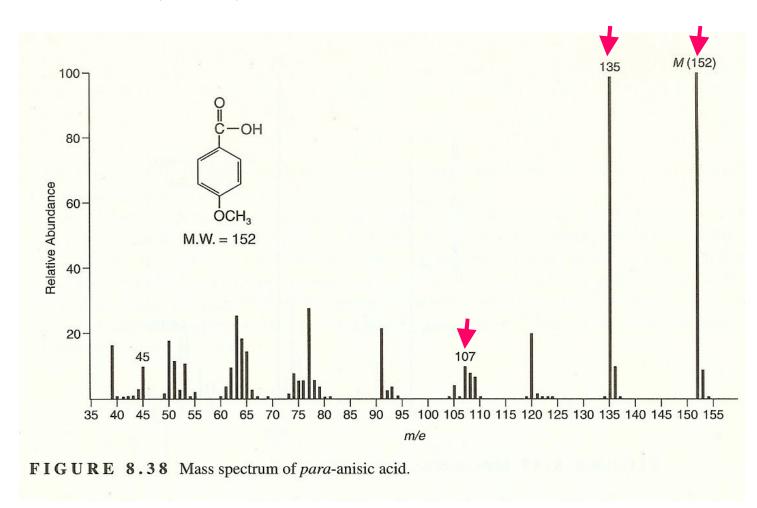

E. Carboxylic acid

Molecular ion peak (M+): weak for aliphatic, strong for aromatic

Fragment ion:

for aliphatic: M-17 (=OH loss), M-45 (=COOH+ loss)

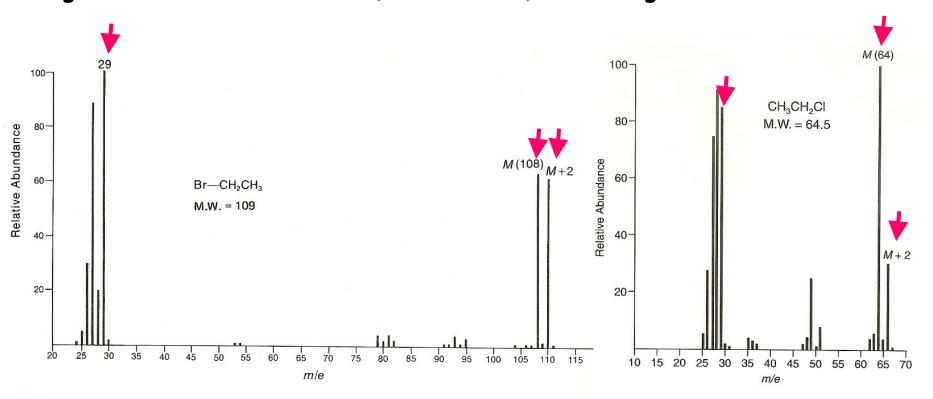
m/z=45, 60 (McLafferty rearrangement)


E. Carboxylic acid

Molecular ion peak (M+): weak for aliphatic, strong for aromatic Fragment ion:

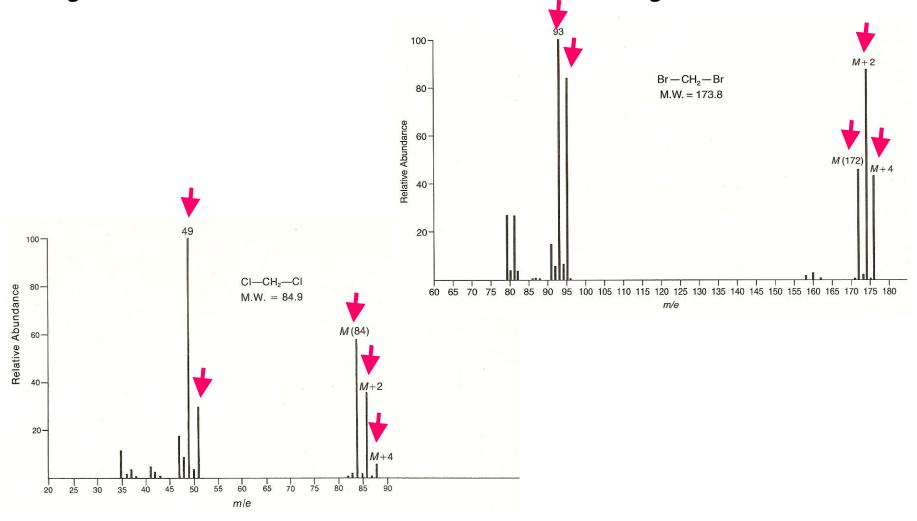
for aliphatic: M-17 (=OH loss), M-45 (=COOH+ loss)

m/z=45, 60 (McLafferty rearrangement)


for aromatic: M-17, M-45, M-18

f. Alkyl halides

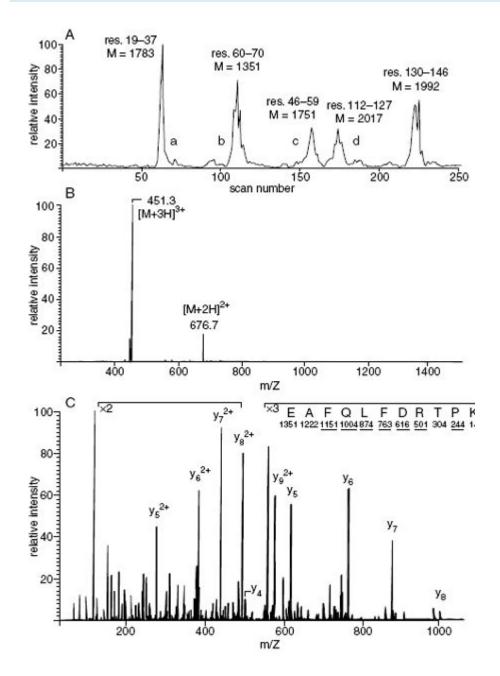
* Strong M+2 $\left\{ \begin{array}{l} Cl: M: M+2 = 3:1 \\ Br: M: M+2 = 1:1 \end{array} \right.$


Fragment ion: loss of Cl or Br, loss of HCl, $\alpha\text{-cleavage}$

f. Alkyl halides

* Strong M+2 $\left\{ \begin{array}{l} Cl: M: M+2 = 3:1 \\ Br: M: M+2 = 1:1 \end{array} \right.$

Fragment ion: loss of Cl or Br, loss of HCl, α -cleavage


7. Liquid Chromatography-Mass Spectrometry (LC-MS)의 원리

- GC/MS와는 달리 LC-MS 시스템은 훨씬 후에 실용화 ← LC는 액상, MS는 기상에서 또는 LC는 상은, MS는 섭씨 100~350도에서 조작되도록 고안
- LC-MS 종류
 - Thermospray (TS) LC-MS
 - Electrospray Ionization (ESI) LC-MS
 - Atmospheric Pressure Ionization (API) LC-MS
 - CFFAB(Continuous Flow Fast Atom Bombardment) LC-MS 등이 개발됨

8. Liquid Chromatography-Mass Spectrometry (LC-MS)의 응용

- LC-MS는 신속성, 고감도 (high sensitivity), 선택성 (selectivity) 등의 특성들로 인해 의약품 개발의 각 단계에서 중요한 도구로 사용
- 새로운 선도 후보 물질 (lead candidate)을 찾기 위한 drug discovery 단계에서 의약품 분석의 주된 역할은 (1) target identification (2) lead identification (3) lead optimization이 됨. LC-MS는 합성 선도 화합물의 신속한 분자량 확인에서부터 정밀한 구조분석에 이르기까지 다양한 범위에서 proteomics, glycoprotein mapping, 천연물 확인 및 스크리닝, combinatorial/medicianl chemistry support, in vitro/in vivo drug screening, 대사 안정성 시험 등의 여러 분야에 응용되어지고 있음

8. Liquid Chromatography-Mass Spectrometry (LC-MS)의 응용 예(1)

LC-MS/MS를 이용한 2-DE에서 분리된 단백질의 확인.

- (A) 2-DE에서 분리된 단백질 spot의 capillary HPLC로부터 얻어진 base peak profile
- (B) 두 번째 주요 피크 (residue 60-70)의 MS spectrum
- (C) m/z 451.3 피크의 LC-MS/MS product ion spectrum (출처: Arnott et al., 1995).

9. Gas Chromatography-Mass Spectrometry (GC-MS)의 원리

- GC-MS에서는 기체크로마토그래프로 머무름 시간에 따라 분리된 성분에 대하여 각각의 질량스펙트럼을 측정 (GC가 검출기로서 질량분석계가 사용)
- 휘발성 성분이 공존하는 혼합물의 분리 분석
- 질량분석기는 10⁻⁵~10⁻⁶ torr 정도의 진공에서 작동 → GC와 MS 장비를 연결시키는 인터페이스 (interface) 기술이 우선적으로 개발될 필요
- 분리기(separator)를 사용하여 대부분의 운반기체를 제거하고 분리된 성분만 질량 분석계에 도입 → 젯트형 분리기(jet separator): 저분자 유기물은 운반기체와 함 께 확산됨으로 감도 저하 초래
- *GC* 모세관 컬럼(capillary column) 사용: 유속을 적게 함으로서 *GC*와 MS를 직접적으로 연결할 수 있으며, *GC* 컬럼의 분리능 변화없이 MS에서 검출할 수 있는 장점
- "비휘발성"이란 질량분석기 이온원의 온도와 압력에서 충분한 증기압을 갖지 않거나, GC/MS에 의한 분석에서 GC 컬럼을 통과할 만한 충분한 휘발성을 갖고 있지 않는 물질을 의미
- 비휘발성 물질을 *GC-MS*로 분석하기위해서 유도체화 반응 → 화합물의 열적 안정성 제고가능, 크로마토그래픽 분리능을 향상 가능, 높은 감도을 제공 가능, 질량분석 시 특정한 이온을 발생시켜 구조분석에 중요한 정보를 제공 가능

감 사 합 니 다

References:

- 1. Introduction to spectroscopy, 4th ed. Pavia et al, Thomson Learning (2008)
- 2. Pharmaceutical analysis, 2nd Edition, David Watson, Elsevier (2005)
- 3. Daniel C. Harris, "Exploring Chemical Analysis" Third ed., W. H. Freeman and Company, New York (2004)
- 4. 약품기기분석학(Pharmaceutical Instrumental Analysis, 신일상사 (2007)
- 5. Young In Analytical Applications
- 6. Agilent 자료/Shiseido 자료