A Flexible New Technique for Camera Calibration

Zhengyou Zhang
Microsoft Research
IEEE Transaction on pattern analysis
And Machine intelligence, Nov. 2000
Outline

• Camera Calibration Technique
• Basic Equations
• Solving intrinsic parameters
• Solving extrinsic parameters
• Dealing with radial distortion
• Experimental Result
• Conclusion
Camera Calibration Technique

- Photogrammetric calibration
 - Calibration Object consists of two or three planes orthogonal
- Self-Calibration
 - Moving a camera in a static scene
The Proposed Technique

• Camera to observe a planar pattern
 – At least two orientation
 – The planar pattern can move by hand
• The Technique
 – Between photogrammetric calibration
 – And self-calibration
Basic Equations

\[s \tilde{m} = A [R \quad t] \tilde{M} \]

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} = A[R \quad t]
\begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

\[A = \begin{bmatrix}
 \alpha & \gamma & u_0 \\
 0 & \beta & v_0 \\
 0 & 0 & 1
\end{bmatrix} \]
Homography

• $Z=0$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A[R \quad t] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A \begin{bmatrix} r_1 & r_2 & r_3 & t \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}.$$
Estimated Homography

- Maximum Likelihood Criterion
 - Levenberg-Marquardt Algorithms
 - Steepest descent method
 - Newton Method

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} \| m_{i,j} - \hat{m}(A, R_i, t_i, M_j) \|^2
\]

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix}
= A \begin{bmatrix}
 R \\
 t
\end{bmatrix}
\]

A, [R t] unknown
Solving intrinsic parameters

- Constraints intrinsic parameters

\[H = A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \]

\[\begin{bmatrix} h_1 & h_2 & h_3 \end{bmatrix} = \lambda A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \]

\[r_1 \text{ and } r_2 \text{ are orthonormal} \]

\[h_1^T A^{-T} A^{-1} h_2 = 0 \]
Solving intrinsic parameters

- **Singular Value Decomposition, SVD**

\[
H = A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} A = \begin{bmatrix} \alpha & \gamma & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
B = A^{-T}A^{-1} = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{12} & B_{22} & B_{23} \\ B_{13} & B_{23} & B_{33} \end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{1}{\alpha^2} & -\frac{\gamma}{\alpha^2\beta} & \frac{v_0\gamma-u_0\beta}{\alpha^2\beta^2} \\
-\frac{\gamma}{\alpha^2\beta} & \frac{\gamma^2}{\alpha^2\beta^2} + \frac{1}{\beta^2} & -\frac{v_0\gamma-u_0\beta}{\alpha^2\beta^2} - \frac{v_0}{\beta^2} \\
\frac{v_0\gamma-u_0\beta}{\alpha^2\beta^2} & -\frac{v_0\gamma-u_0\beta}{\alpha^2\beta^2} - \frac{v_0}{\beta^2} & \frac{(v_0\gamma-u_0\beta)^2}{\alpha^2\beta^2} + \frac{v_0^2}{\beta^2} + 1
\end{bmatrix}
\]

\[
h_i^T A^{-T} A^{-1} h_2 = 0
\]

\[
h_i^T B h_j = v_{ij}^T b
\]

\[
V b = 0
\]
Solving intrinsic parameters

\[V_b = 0 \]

\[
\begin{bmatrix}
 h_{11} h_{21} \\
 h_{11} h_{22} + h_{12} h_{21} \\
 h_{12} h_{22} \\
 h_{13} h_{21} + h_{11} h_{23} \\
 h_{13} h_{22} + h_{12} h_{23} \\
 h_{13} h_{23}
\end{bmatrix}
\begin{bmatrix}
 B_{11} \\
 B_{12} \\
 B_{13} \\
 B_{21} \\
 B_{22} \\
 B_{23} \\
 B_{33}
\end{bmatrix}
= O
\]

\[[h_1 \ h_2 \ h_3] \]
Solving intrinsic parameters

\[
B = A^{-T}A^{-1} = \begin{bmatrix}
B_{11} & B_{12} & B_{13} \\
B_{12} & B_{22} & B_{23} \\
B_{13} & B_{23} & B_{33}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{1}{\alpha^2} & -\frac{\gamma}{\alpha^2\beta} & \frac{\nu_0\gamma - \nu_0\beta}{\alpha^2\beta} \\
-\frac{\gamma^2}{\alpha^2\beta^2} + \frac{1}{\beta^2} & \frac{\gamma^2}{\alpha^2\beta^2} - \frac{\nu_0\beta}{\beta^2} & \frac{\gamma(\nu_0\gamma - \nu_0\beta)}{\alpha^2\beta^2} - \frac{\nu_0}{\beta^2} \\
\frac{\nu_0\gamma - \nu_0\beta}{\alpha^2\beta} & -\frac{\gamma(\nu_0\gamma - \nu_0\beta)}{\alpha^2\beta^2} - \frac{\nu_0}{\beta^2} & \frac{(\nu_0\gamma - \nu_0\beta)^2}{\alpha^2\beta^2} + \frac{\nu_0^2}{\beta^2} + 1
\end{bmatrix}
\]

\[
\nu_0 = (B_{12}B_{13} - B_{11}B_{23})/(B_{11}B_{22} - B_{12}^2)
\]

\[
\lambda = B_{33} - [B_{13} + \nu_0(B_{12}B_{13} - B_{11}B_{23})]/B_{11}
\]

\[
\alpha = \sqrt{\lambda/B_{11}}
\]

\[
\beta = \sqrt{\lambda B_{11}/(B_{11}B_{22} - B_{12}^2)}
\]

\[
\gamma = -B_{12}\alpha^2\beta/\lambda
\]

\[
u_0 = \gamma\nu_0/\beta - B_{13}\alpha^2/\lambda
\].
Solving extrinsic parameters

\[H = A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \]

\[\begin{bmatrix} h_1 & h_2 & h_3 \end{bmatrix} = \lambda A \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \]

\[r_1 = \lambda A^{-1} h_1 \]
\[r_2 = \lambda A^{-1} h_2 \]
\[r_3 = r_1 \times r_2 \]
\[t = \lambda A^{-1} h_3 \]
Dealing with radial distortion

- \(x, y \) : ideal normalized image coordinates
- \(x, y \) bar : real normalized image coordinates

\[
\tilde{x} = x + x[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2] \\
\tilde{y} = y + y[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]
\]

- \(u, v \) : ideal pixel image coordinates
- \(u, v \) bar : real observe image coordinates

\[
\tilde{u} = u + (u - u_0)[k_1(x^2 - y^2) + k_2(x^2 + y^2)^2] \\
\tilde{v} = v + (v - v_0)[k_1(x^2 + y^2) + k_2(x^2 + y^2)^2]
\]
Dealing with radial distortion

\[
\begin{bmatrix}
(u-u_0)(x^2+y^2) & (u-u_0)(x^2+y^2)^2 \\
(v-v_0)(x^2+y^2) & (v-v_0)(x^2+y^2)^2
\end{bmatrix}
\begin{bmatrix}
k_1 \\
k_2
\end{bmatrix} =
\begin{bmatrix}
\bar{u}-u \\
\bar{v}-v
\end{bmatrix}
\]

\[
k = (D^T D)^{-1} D^T d
\]
Complete Maximum Likelihood Estimation

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \| m_{ij} - \tilde{m}(A, k_1, k_2, R_i, t_i, M_j) \|^2
$$
Summary

- Recommended calibration procedure
 1) Print a pattern
 - attach it to a planar surface
 2) Under different orientation
 - by moving plane or camera
 3) Detect feature point
 4) Estimate intrinsic and extrinsic parameters
 5) Estimate coefficient of radial distortion
 6) Minimizing Maximum Likelihood Estimation
Camera Calibration
Experimental Result

- 8x8 squares, 256 corners
- Resolution 640x480
- Pattern size 17cm x 17cm

<table>
<thead>
<tr>
<th>nb</th>
<th>initial</th>
<th>final</th>
<th>(\sigma)</th>
<th>initial</th>
<th>final</th>
<th>(\sigma)</th>
<th>initial</th>
<th>final</th>
<th>(\sigma)</th>
<th>initial</th>
<th>final</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>825.59</td>
<td>830.47</td>
<td>4.74</td>
<td>917.65</td>
<td>830.80</td>
<td>2.06</td>
<td>876.62</td>
<td>831.81</td>
<td>1.56</td>
<td>877.16</td>
<td>832.50</td>
<td>1.41</td>
</tr>
<tr>
<td>(\beta)</td>
<td>825.26</td>
<td>830.24</td>
<td>4.85</td>
<td>920.53</td>
<td>830.69</td>
<td>2.10</td>
<td>876.22</td>
<td>831.82</td>
<td>1.55</td>
<td>876.80</td>
<td>832.53</td>
<td>1.38</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2956</td>
<td>0.1676</td>
<td>0.109</td>
<td>0.0658</td>
<td>0.2867</td>
<td>0.095</td>
<td>0.1752</td>
<td>0.2045</td>
<td>0.078</td>
</tr>
<tr>
<td>(u_0)</td>
<td>295.79</td>
<td>307.03</td>
<td>1.37</td>
<td>277.09</td>
<td>305.77</td>
<td>1.45</td>
<td>301.31</td>
<td>304.53</td>
<td>0.86</td>
<td>301.04</td>
<td>303.96</td>
<td>0.71</td>
</tr>
<tr>
<td>(v_0)</td>
<td>217.69</td>
<td>206.55</td>
<td>0.93</td>
<td>223.36</td>
<td>206.42</td>
<td>1.00</td>
<td>220.06</td>
<td>206.79</td>
<td>0.78</td>
<td>220.41</td>
<td>206.59</td>
<td>0.66</td>
</tr>
<tr>
<td>(k_1)</td>
<td>0.161</td>
<td>-0.227</td>
<td>0.006</td>
<td>0.128</td>
<td>-0.229</td>
<td>0.006</td>
<td>0.145</td>
<td>-0.229</td>
<td>0.005</td>
<td>0.136</td>
<td>-0.228</td>
<td>0.003</td>
</tr>
<tr>
<td>(k_2)</td>
<td>-1.955</td>
<td>0.194</td>
<td>0.032</td>
<td>-1.986</td>
<td>0.196</td>
<td>0.034</td>
<td>-2.089</td>
<td>0.195</td>
<td>0.028</td>
<td>-2.042</td>
<td>0.190</td>
<td>0.025</td>
</tr>
<tr>
<td>RMS</td>
<td>0.761</td>
<td>0.295</td>
<td></td>
<td>0.987</td>
<td>0.393</td>
<td></td>
<td>0.927</td>
<td>0.361</td>
<td></td>
<td>0.881</td>
<td>0.335</td>
<td></td>
</tr>
</tbody>
</table>
Application to image-base modeling

Two reconstructed planes
94.7°
Conclusion

• A few different orientations
• We can move either camera or planar pattern
• Motion doesn’t need to be known
• Consists of a closed-form solution
• Based on maximum likelihood criterion